Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Developmental dyslexia runs in families, and twin studies have confirmed that there is a substantial genetic contribution to poor reading. The way in which discoveries in molecular genetics are reported can be misleading, encouraging us to think that there are specific genes that might be used to screen for disorder. However, dyslexia is not a classic Mendelian disorder that is caused by a mutation in a single gene. Rather, like many other common disorders, it appears to involve combined effects of many genes and environmental factors, each of which has a small influence, possibly supplemented by rare variants that have larger effects but apply to only a minority of cases. Furthermore, to see clearer relationships between genotype and phenotype, we may need to move beyond the clinical category of dyslexia to look at underlying cognitive deficits that may be implicated in other neurodevelopmental disorders.

Original publication

DOI

10.1098/rspb.2014.3139

Type

Journal article

Journal

Proc Biol Sci

Publication Date

07/05/2015

Volume

282

Keywords

dyslexia, genetics, neurodevelopmental disorders, specific language impairment, twins, Cognition Disorders, Dyslexia, Genotype, Humans, Phenotype