Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Sex chromosome trisomies (SCTs) (XXX, XXY, and XYY karyotypes) are associated with an elevated risk of neurodevelopmental disorders. The range of severity of the phenotype is substantial. We considered whether this variable outcome was related to the presence of copy number variants (CNVs)-stretches of duplicated or deleted DNA. A sample of 125 children with an SCT were compared with 181 children of normal karyotype who had been given the same assessments. First, we compared the groups on measures of overall CNV burden: number of CNVs, total span of CNVs, and likely functional impact (probability of loss-of-function intolerance, pLI, summed over CNVs). Differences between groups were small relative to within-group variance and not statistically significant on overall test. Next, we considered whether a measure of general neurodevelopmental impairment was predicted by pLI summed score, SCT versus comparison group, or the interaction between them. There was a substantial effect of SCT/comparison status but the pLI score was not predictive of outcomes in either group. We conclude that variable presence of CNVs is not a likely explanation for the wide phenotypic variation in children with SCTs. We discuss methodological challenges of testing whether CNVs are implicated in causing neurodevelopmental problems.

Original publication

DOI

10.1002/ajmg.c.31791

Type

Journal article

Journal

Am J Med Genet C Semin Med Genet

Publication Date

06/2020

Volume

184

Pages

256 - 266

Keywords

copy number variants, double hit, language, loss-of-function intolerance, neurodevelopmental disorder, sex chromosome trisomy