Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Single unit recording studies in non-human premotor cortex have revealed neurons with motor-related activity. Other neurons, however, seem to be involved in prior movement selection and preparation processes, and have activity related to visual instruction signals or movement preparation ('set'). We have used single pulse transcranial magnetic stimulation (TMS) to identify similar processes in human subjects. In Experiment 1 subjects performed a cued movement task while being stimulated with TMS over three sites: sensorimotor cortex, posterior premotor cortex and anterior premotor cortex. TMS slowed movements when applied at 140 ms after the visual cue over the anterior premotor site, at 180 ms after the visual cue over the posterior premotor site, and at 220 ms and later after the visual cue over the sensorimotor cortex. The results are consistent with a change from signal to movement-related processing when moving from premotor to motor cortex. In Experiment 2 there was a preparatory set period between the instruction signal that informed subjects which movement to make and the 'go' signal that informed them when to actually make the movement. TMS was applied over the anterior premotor site and the sensorimotor site during the set period. At both sites TMS had similar effects on slowing subsequent movements. The results suggest set activity in both premotor and motor cortices in human subjects.

Type

Journal article

Journal

Neuropsychologia

Publication Date

02/1999

Volume

37

Pages

233 - 243

Keywords

Brain, Electroencephalography, Electromagnetic Phenomena, Female, Humans, Magnetic Resonance Imaging, Male, Movement, Reaction Time