Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Human listeners exhibit marked sensitivity to familiar music, perhaps most readily revealed by popular "name that tune" games, in which listeners often succeed in recognizing a familiar song based on extremely brief presentation. In this work, we used electroencephalography (EEG) and pupillometry to reveal the temporal signatures of the brain processes that allow differentiation between a familiar, well liked, and unfamiliar piece of music. In contrast to previous work, which has quantified gradual changes in pupil diameter (the so-called "pupil dilation response"), here we focus on the occurrence of pupil dilation events. This approach is substantially more sensitive in the temporal domain and allowed us to tap early activity with the putative salience network. Participants (N = 10) passively listened to snippets (750 ms) of a familiar, personally relevant and, an acoustically matched, unfamiliar song, presented in random order. A group of control participants (N = 12), who were unfamiliar with all of the songs, was also tested. We reveal a rapid differentiation between snippets from familiar and unfamiliar songs: Pupil responses showed greater dilation rate to familiar music from 100-300 ms post-stimulus-onset, consistent with a faster activation of the autonomic salience network. Brain responses measured with EEG showed a later differentiation between familiar and unfamiliar music from 350 ms post onset. Remarkably, the cluster pattern identified in the EEG response is very similar to that commonly found in the classic old/new memory retrieval paradigms, suggesting that the recognition of brief, randomly presented, music snippets, draws on similar processes.

Original publication

DOI

10.1038/s41598-019-51759-9

Type

Journal article

Journal

Sci Rep

Publication Date

30/10/2019

Volume

9

Keywords

Auditory Perception, Brain, Electroencephalography, Female, Humans, Male, Music, Pupil, Recognition, Psychology, Young Adult