Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Electrophysiological studies on monkeys have been able to distinguish sensory and motor signals close in time by pseudorandomly delaying the cue that instructs the movement from the stimulus that triggers the movement. We have used a similar experimental design in functional magnetic resonance imaging (fMRI), scanning subjects while they performed a visuomotor conditional task with instructed delays. One of four shapes was presented briefly. Two shapes instructed the subjects to flex the index finger; the other two shapes coded the flexion of the middle finger. The subjects were told to perform the movement after a tone. We have exploited a novel use of event-related fMRI. By systematically varying the interval between the visual and acoustic stimuli, it has been possible to estimate the significance of the evoked haemodynamic response (EHR) to each of the stimuli, despite their temporal proximity in relation to the time constant of the EHR. Furthermore, by varying the phase between events and image acquisition, we have been able to achieve high temporal resolution while scanning the whole brain. We dissociated sensory and motor components of the sensorimotor transformations elicited by the task, and assessed sustained activity during the instructed delays. In calcarine and occipitotemporal cortex, the responses were exclusively associated with the visual instruction cues. In temporal auditory cortex and in primary motor cortex, they were exclusively associated with the auditory trigger stimulus. In ventral prefrontal cortex there were movement-related responses preceded by preparatory activity and by signal-related activity. Finally, responses associated with the instruction cue and with sustained activity during the delay period were observed in the dorsal premotor cortex and in the dorsal posterior parietal cortex. Where the association between a visual cue and the appropriate movement is arbitrary, the underlying visuomotor transformations are not achieved exclusively through frontoparietal interactions. Rather, these processes seem to rely on the ventral visual stream, the ventral prefrontal cortex and the anterior part of the dorsal premotor cortex.

Type

Journal article

Journal

Cereb Cortex

Publication Date

01/1999

Volume

9

Pages

35 - 49

Keywords

Adult, Cues, Female, Hemodynamics, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Movement, Psychomotor Performance, Set (Psychology)