Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Adult observers show elevated speed discrimination thresholds when comparing the speeds of objects moving across a boundary compared to those moving parallel to a boundary (Verghese & McKee, 2006)-an effect that has been attributed to grouping processes in conjunction with a prior for smooth motion. Here, we extended Verghese and McKee's (2006) paradigm to typically developing children (n = 35) and children with autism (n = 26) and compared their performance with that of typical adults (n = 19). Speed discrimination thresholds were measured in three conditions: (a) with dots moving parallel to a boundary, (b) with dots moving perpendicular to a boundary, and (c) with dots in each stimulus half moving in orthogonal, oblique directions. As expected, participants had higher speed discrimination thresholds when dots appeared to cross a boundary compared to when dots moved parallel to the boundary. However, participants had even higher thresholds when dots moved in oblique, orthogonal directions, where grouping should be minimal. All groups of participants showed a similar pattern of performance across conditions although children had higher thresholds than adult participants overall. We consider various explanations for the pattern of performance obtained, including enhanced sensitivity for shearing motions and reduced sensitivity for discriminating different directions. Our results demonstrate that the speed discrimination judgments of typically developing children and children with autism are similarly affected by spatial configuration as those of typical adults and provide further evidence that speed discrimination is unimpaired in children with autism.

Original publication

DOI

10.1167/15.11.17

Type

Journal article

Journal

J Vis

Publication Date

01/08/2015

Volume

15

Keywords

Adolescent, Adult, Autistic Disorder, Child, Child Development, Female, Humans, Male, Motion Perception, Pattern Recognition, Visual, Sensory Thresholds