

Department of Experimental Psychology, University of Oxford; Department of Psychology, Tsinghua University jie.sui@psy.ox.ac.uk

Introduction

- Self-related processing recruits a ventral network including the ventro-medial prefrontal cortex (vmPFC) and the left posterior superior temporal sulcus (pSTS)¹.
- Attentional control is associated with the dorsal frontalparietal network.
- This study assessed the interaction between the self and attentional control networks² by testing a group of neuropsychological patients and assessing the relations between their lesions and any behavioural deficit on face and executive processing tasks (hypoor hyper-self bias).

Methods

- ✤ 30 neuropsychological patients (28 stroke).
- Four tasks were included (Fig.1)
- ✤ Task1: face orientation participants had to judge orientation of faces (self faces, faces of a the familiar other, or faces of a stranger).
- Task2: face categorisation participants were required to group faces into familiar (their own faces and faces of a familiar other) or unfamiliar categories.
- Task3: cross task the stimuli were identical to tasks and 2, but participants had to judge which element of a cross (horizontal vs. vertical) was longer while ignoring faces in the background.
- ✤ Task4: rule funding and switching (BCoS battery) participants were asked to predict the next move of a black dot (e.g., toward a red or a blue square?).
- Measures
 - Self-bias was indexed by the difference in performance between the self and familiar others; hyper-, normal or hypo- self bias was defined in contrast to the scores in 30 age and gender matched healthy controls.

Interaction of the self and executive control in stroke patients

Jie Sui, Magdalena Chechlacz, and Glyn W. Humphreys

Fig. 1 A. the face orientation (task1), the face categorisation (task2), and the cross task (task 3). B. rule finding and switching (task 4).

Factor analysis across the four tasks

Fig. 2. A. two factors were formed. Self factor: tasks 1,2; Attentional control

factor: tasks 3, 4. B. The factors do not two correlate.

Factors and white matter disconnections

Self factor and grey matter lesions

Fig. 4. Lesions in the ventro-medial prefrontal cortex were associated with the self factor (hypo-self bias).

Fig. 3. A. Lesions in the right IFOF positively correlated with the self factor indicating the deficits of hypo-

B. Lesions in the left arcuate, SLF2, and SLF3 positively correlated with attentional control factor self-bias hyperand impaired rule finding.

Fig. 5. Lesions in the bilateral dorsal parietal cortex and the left inferior frontal cortex were associated with the attentional control factor (hyper- self bias and deficits in rule finding).

pathway and grey matter lesions

Fig. 6. The self factor: overlay between the vmPFC right and IFOF.

Fig. 7. The attentional control factor: overlay between the bilateral dorsal parietal cortex, the left inferior frontal cortex and the left SLF2 SLF3, and arcuate.

The ventral self network and dorsal frontal-parietal attentional control networks play opposite roles in self-bias.

References

. Sui, J., Rotshtein, P., & Humphreys, G.W. (2013). PNAS. 2. Humphreys, G.W. & Sui, J. (2015). Cogn. Neurosci.

welcometrust

Investigator

Attentional control factor and grey matter lesions

Overlay between trajectories of white matter

