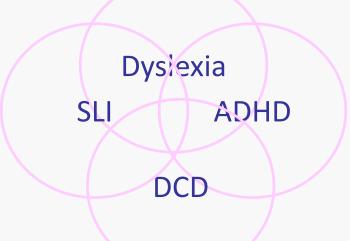
BDA International Conference 2011

Understanding comorbidity between dyslexia and other developmental disorders

Debbie Gooch Kristina Moll Emma Birkett Kim Rochelle Yulia Kovas

Attention & motor skills in children at risk of dyslexia

Debbie Gooch, Hannah Nash, Maggie Snowling & Charles Hulme



Dyslexia

- Reading and spelling deficit affecting 3-7% of school aged children
 - Core phonological deficit
- Co-occurring disorders:
 - SLI (McArthur et al., 2000)
 - Separable from dyslexia?
 - ADHD (Willcutt & Pennington, 2000)
 - DCD (Rochell & Talcott, 2006)
- Shared etiological risk factors?
- May affect the profile of difficulties in children with dyslexia and their response to intervention

Dyslexia & ADHD

- Symptoms of inattention, hyperactivity & impulsivity (DSM V; APA, 2010)
 - Core deficit in behavioural inhibition > executive functions (Barkley, 1997)
 - Sustained attention, Response variability, Working memory (visuo-spatial), Temporal processing (Castellanos & Tannock, 2002)
 - Prevalence rate 5-7% (Polanczyk, Silva de Lima, Horta, Biederman & Rohde, 2007)
- 15-35% with dyslexia also have ADHD (Shaywitz et al., 1992; Willcutt & Pennington, 2000)
 - Common causal mechanisms (Shared etiology)
 - Cognitive level (McGrath et al., 2010; Willcutt, Pennington, Olson, Chhabildas & Hulslander, 2005)
 - Biological level (Light, Pennington, Gilger, & DeFries, 1995; Stevenson et al., 2005)

THE UNIVERSITY O

Dyslexia & DCD

- Difficulties in motor performance that are unexpected given the child's age and opportunities for skill acquisition (DSM-V; APA 2010)
 - Prevalence rates vary widely (5-18%) (Geuze, Jongmans, Schoemaker & Smits-Englesman, 2001)
- Over 50% of children with dyslexia meet criteria for DCD (Kaplan et al., 1998) and DCD is frequently comorbid with other developmental disorders e.g. SLI and ADHD (Visser, 2003; Hill, 2001)
 - Common causal mechanism
 - Genetic (Regehr & Kaplan, 1988)
 - Neuropsychological e.g. Timing (Wolff et al., 1984; 1990)
 - Marker of atypical brain development (Kaplan et al., 1998)

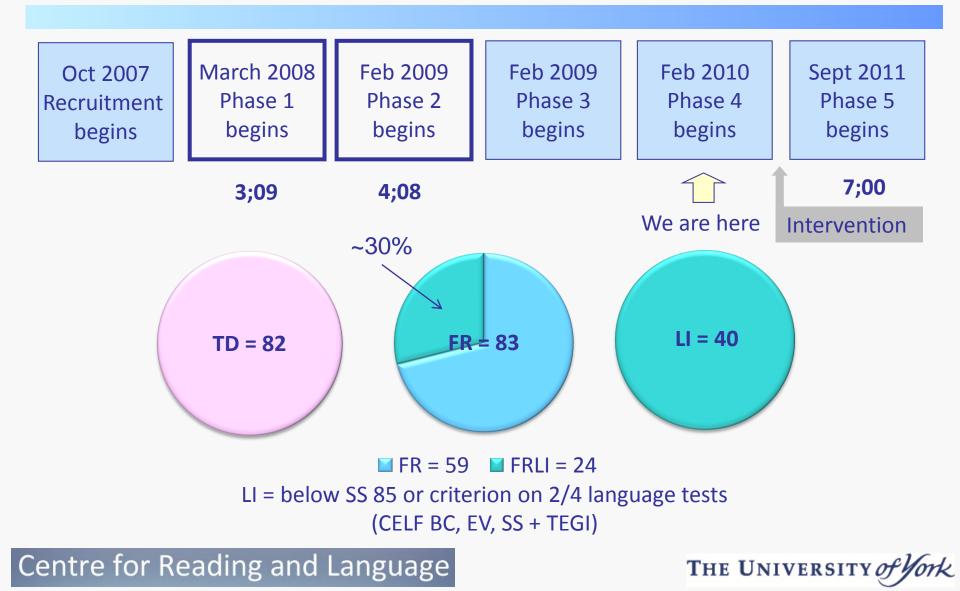
Centre for Reading and Language

THE UNIVERSITY of York

Findings from at risk studies

- Some at risk children are slower to reach early developmental motor milestones (Viholainen et al., 2006 Jyvaskyla project)
 - 3 yrs language difficulties (they had smaller vocabularies and poorer inflectional skills
 - 7 yrs slower readers
- At risk children who received a diagnosis of dyslexia had more symptoms of inattention/hyperactivity than those who did not receive a diagnosis (Snowling, Carroll & Muter, 2007)
- Complex interplay between disorders
 - Multiple deficit models (e.g. Pennington, 2006) suggest that comorbidity between disorders is expected if they share risk factors

Research questions



- Do children at risk of dyslexia have weaknesses in their early attention/motor skills?
 - FR and LI compared to TD
- What are the relationships between children's attention/motor skills and their early language/literacy skills?
- Do children's attention/motor skills contribute to their literacy outcomes over and above known predictors of literacy?
 - Are children with additional comorbid difficulties most at risk?

THE UNIVERSITY Q

The study

The groups

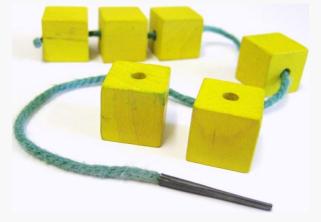
	TD (82)	FR (59)	LI (40)	FR+LI (24)	F	р	Post-hoc
3;09 T1 Age (mths)	45	46	44	45	2.40	ns	n/a
4;08 T2 age (mths)	56	57	55	57	1.49	ns	n/a
NVIQ(ss)	114	109	98	100	13.63	sig	(TD=FR) > (FRLI=LI)
SES Postcode rating (%)	68	65	55	51	3.44	.02	None
% males	54	54	68	75		Chi Sq	= 5.26, ns

Centre for Reading and Language

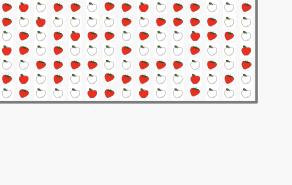
THE UNIVERSITY of York

Centre for Reading and Language

THE UNIVERSITY of Jork


Motor tasks

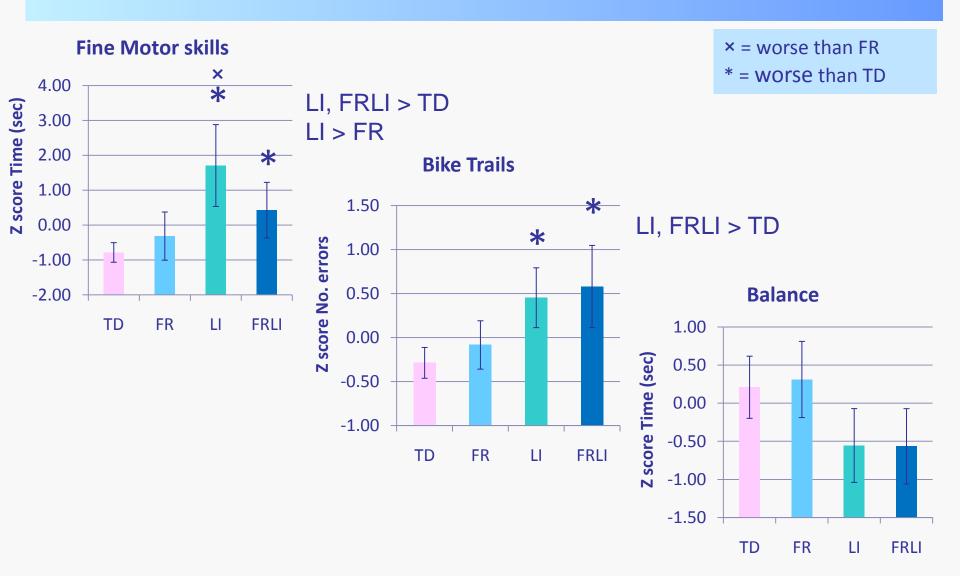
- Fine motor skills
 - Posting coins
 - Bead threading
 - Bike trail
- Balance



Executive Function tasks

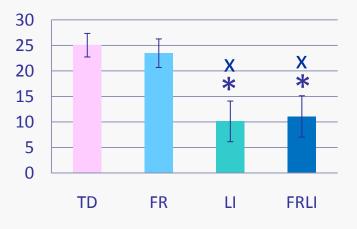
Executive function

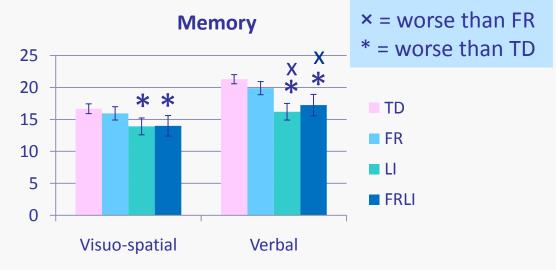
- Complex inhibition/Behavioural regulation
 - Head Toes Knees and Shoulders task (Burrage et al., 2008)
- Memory
 - Block recall (Pickering & Gathercole, 2001)
 - Word recall
- Selective attention
 - Apples task (Breckenridge, 2010)
- Sustained attention
 - Auditory Continuous Performance task
- Simple reaction time



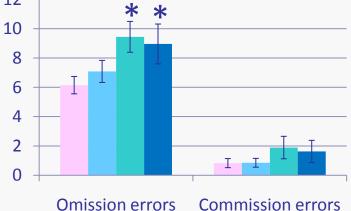
THE UNIVERSITY Q

T2 Motor skills

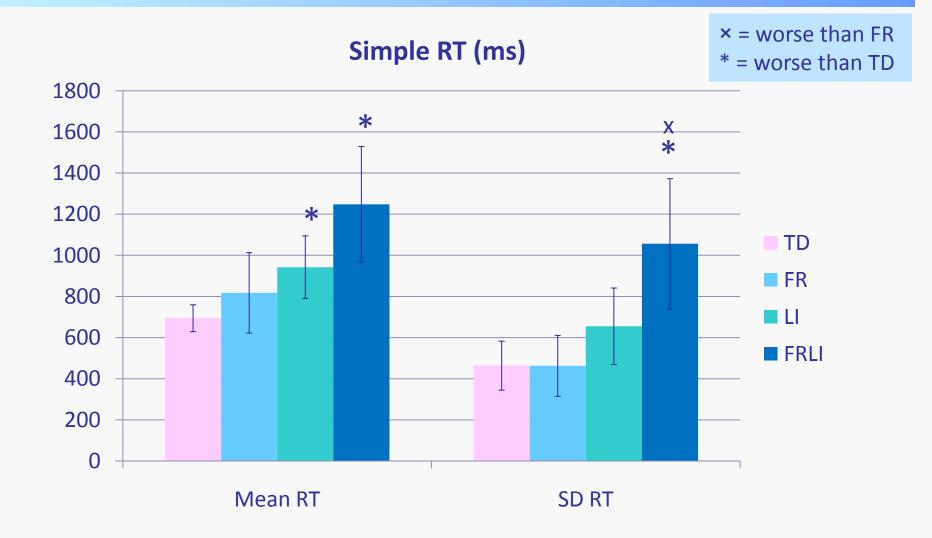




T2 Executive Function



HTKS - complex inhibition


Omission errors

T2 Reaction time

T2 Partial correlations (FR group)

	NVIQ	Language	LSK
Receptive Language	.31		
LSK	.37	.34	
Fine Motor	22	29	39
Balance	.14	.21	.21
Sustained attention	37	46	39
Selective attention	33	11	07
HTKS (Inhibition)	.42	.38	.39
Visual-Spatial Memory	.41	.38	.32
RTSD	24	23	36

Controlling for age; r > .24 sig at p<.05, N = 63

Who is most at risk in the FR group?

Step	Predictors of T2 LSK	Unique pre	dictors R ²
1	Age	*	
	T1 LSK	**	
	NVIQ	ns	
	T1 DEAP (Speech)	ns	55
	T2 Non-Word Rep	ns	
	T2 Sentence structure	ns	
	T2 Alliteration Matching	**	
2	T2 HTKS (Behavioural inhibition)	ns	.55
2	T2 ACPT omissions (attention)	ns	.57
2	T2 RT variability (attention)	* (3%)	.58
2	T2 Fine Motor	* (3%)	.58

Centre for Reading and Language

THE UNIVERSITY of York

T2 Summary & conclusions

- Children with LI continue to show weaknesses in motor skills and executive functions when they are 4 yrs
 - Specific or non-specific difficulties?
 - Children with FRLI have weaknesses in attention compared to TD controls (ACPT and RT variability)
 - Evidence of multiple risk factors?
- RT variability (key endophenotype of ADHD) and fine motor skills predict LSK over and above language skills

www.york.ac.uk/psychology/research/groups/crl/

d.gooch@psych.york.ac.uk

Thank you for listening

Thank you to the families

And to the other members of the research team Maggie Snowling, Charles Hulme, Emma Hayiou-Thomas Hannah Nash, Fiona Duff, Lorna Hamilton, Ruth Leavitt, Katy Grainger

