

ESR 9 & 10: Modelling & MRI

Jochen Braun Cognitive Biology, University of Magdeburg

Gustavo Deco ICREA and Unversitat Pompeu Fabra, Barcelona 1. Context-dependent functional connectivity: emerges from fixed structural connectivity

2. Dynamics of perceptual representations: characterizing collective stable states

3. Spontaneous ongoing attention dynamics: multi-stable displays and/or continuous shape morphing

1. Context-dependence of functional connectivity

Deco, Friston, Hagmann, Mantini, Corbetta, 2013

Structural connectivity: Anatomical connectivity skeleton established by diffusion spectrum imaging.

Functional connectivity:

Statistical dependence between dynamics at remote sites.

Effective connectivity:

Simplest structural connectivity to replicate functional connectivity (e.g., dynamic causal modelling).

How can the same structural connectivity yield different effective connectivities in different task contexts? **Step 1:** Build local nodes with excitatory and inhibitory neurons to obtain spontaneous activity of 3 Hz. In combination with local input, recurrent connectivity may create an additional steady-state at a higher level of activity.

Step 2: Establish structural connectivity matrix SC (with DSI). Scale overall connection strength to destablize global dynamics and to maximize correlation with resting-state FC.

Step 3 (first-order fit): Iteratively adjust local inputs to maximize correlation with task-state BOLD activity.

Step 4 (Second-order validation): Compare FC prediction of driven model with observed task-state FC.

Deco, Friston, Hagmann, Mantini, Corbetta, 2013

A. DCM accounts for FC by individually adjusting N² effective connection weights.

Functional connectivity N² modelled in terms of effective N² connectivity.

B. Gustavo accounts for FC by individually adjusting N local tonic input levels.

Local inputs alter non-linear dynamics of N individual nodes.

Altered average activity predicts N local BOLD signals.

Keeping structural connectivity fixed (apart from scale factor), emerging global dynamics predicts functional connectivity N².

2a. Multi-stable perception:

characterizing collective stable states

Pastukhov, Garcia-Rodriguez, Haenick, Guillamon, Deco, Braun (2012) Front. Comp.Neurosci.

Kinetic depth effect Wallach, O'Connell, 1953

Distribution of dominance periods

Cumulative history

 $S_x(t)$ perceptual appearance

 $H_x(t)$ leaky integrator of appearance with time constant τ_H

Pastukhov, Braun (2010) Journal Vision 10(11): 12

Cumulative history

C_H τ_H

The superficial diversity

Individual statistical measures vary widely between observers and displays. Superfically, the perceptual dynamics is anything but consistent!

Balance of competition, adaptation, and noise

A simple model generates a continuum of possible dynamics, which are parametrized by competition β , adaptation φ_a , and signal-to-noise ratio I_0

Laing, Chow (2002) Journal Computational Neuroscience 12(1): 39-53.

Dynamical regimes I

Different combinations of competition β , adaptation ϕ_a , and signalto-noise ratio I₀ produce different kinds of reversal sequences.

Dynamical regimes II

Formally, distinguish "bistable" and "oscillatory" regimes. Human observers typically fall between these extremes.

Pastukhov, et al. (2013) Frontiers in Comp Neuroscience

Individual observer "operating regime"

Small volumes reproduce dominance distribution & history dependence of individual human observers: ~ 3% of possible parameter space.

The hidden consistency I

Union of "operating regimes" of all observers, ~15% of possible parameter space. Clustering is significant p <.02

The hidden consistency II

Region matching only dominance distribution (not history dependence) of all observers: ~75% of possible parameter space.

Why operate in a particular regime?

Functional 'sweet spot'

Theory predicts a functional 'sweet spot' which balances stability (dominance time) against sensitivity (here: frequency resonance).

Functional 'sweet spot'

'Sweet spot' near, but not at, bifurcation surface (= boundary between bistable and oscillatory regimes)

Balance of stability and sensitivity

Humans operate in functional 'sweet spot' (cyan volume).

Comparing competition (vertical β-axis)

normal adults vs. 16-year olds (with Ilona Kovacs, Budapest)

Comparing competition (vertical β-axis)

normal adults vs. anorexia nervosa (with Ilona Kovacs, Budapest)

Two-level model

All interactions determined by psychophysics

Transition-related activations

2b. Perceptual organization:

characterizing collective stable states

Aguilar, Mattia, Braun, in prep.

Perceptual organization is cooperative

Perceptual organization exhibits hysteresis

Chialvo, Apkarian, 1993

Motion-binding in RDK

Ascending coherence

Descending coherence

Hysteresis loop

CORONE

Hysteresis may reflect attractor dynamics of recurrently connected representation

- Evidence for cooperativity (Williams, Phillips, Sekuler, 1986).
- Evidence for stochastic dynamics (Chialvo, Apkarian, 1993).
- Stereopsis and binocular rivalry (Buckthought, Kim, Wilson, 2008).
- Qualitative model (You, Meng, Huan, Wang, 2010).

Presumed cortical representation

Hierarchy of recurrent networks

CORONI

Possible sources of hysteresis

Inertial dynamics

Donnerstag, 24. Oktober 2013

bgcr

Attractor dynamics

Inertial dynamics

Attractor dynamics

bgcn

Coherence F follows random walk

CORON

Observer reports final appearance

Fast attractor dynamics

τ = 10 ms

Fast attractor dynamics

Shape-specificity of sensory memory priming

Pastukhov, Braun, 2013 Pastukhov, Füllekrug, Braun, 2013 Pastukhov, Lissner, Füllekrug, Braun 2013 Pastukhov, Lissner, Braun, 2013

Three-level model (qualitative)

3. Spontaneous ongoing attention dynamics

Perceptual dynamics fixes large-scale interactions & flags intermittent attentional engagement

Functional connectivity (resting & task)

Structural connectivity (DSI)

Attentional engagement confirmed by microsaccades

Attentional engagement confirmed by microsaccades

Attentional engagement confirmed by task interference

