Measuring and modeling attentional functions

Søren Kyllingsbæk & Signe Vangkilde
Center for Visual Cognition
A Neural Theory of Visual Attention

- Attention at the psychological and neurophysiological levels
- Quantification of attentional mechanisms
CombiTVA test

(Vangkilde et al., 2011, Psychopharmacology)

Whole report

Partial report

• Report red letters
• Unspeeded => independent of motor component
CombiTVA test

fixation (1000 ms)

Stimulus display (10-200 ms)

Mask (500 ms)

Report

(Vangkilde et al., 2011, Psychopharmacology)

3 display types

Department of Psychology

CombiTVA test

fixation (1000 ms)

Stimulus display (10-200 ms)

Mask (500 ms)

Report

(Vangkilde et al., 2011, Psychopharmacology)
Whole report

Letters correctly reported vs. Stimulus duration (s)

- t_0 is the threshold value
- C and K are critical points

Oxford, Oct 24
Slide 7
Model parameters

Capacity

\[K \] VSTM capacity (items)
\[C \] Processing capacity (items/s)
\[t_0 \] Perceptual threshold (s)

Attentional weights

\[w \] Attentional weights
\[\alpha \] Selectivity
New developments

• Attentional weights are products of spatial and nonspatial components
• Attentional dwell time
• Grounding TVA in cellular neurophysiology
• Perceptual confusability
• Modeling perceptual decisions and reaction times
• EEG and NTVA
• Components of bias in single-stimulus recognition
• Attention to Dopamine

• ESRs 7 AND 8
Attentional weights are products of spatial and nonspatial components

New version of the weight equation:

\[w_x = \sum_{\text{spatial locations } l} \eta(x, l)\pi_l \sum_{\text{nonspatial features } j} \eta(x, j)\pi_j \]

\[\approx \eta[x, \text{location}(x)] \pi_{\text{location}(x)} \sum_{\text{nonspatial features } j} \eta(x, j)\pi_j. \]
Attentional dwell time
Petersen, Kyllingsbæk, & Bundesen (2012)
Grounding TVA in cellular neurophysiology

Attention

Preferred

Non-preferred
Grounding TVA in cellular neurophysiology

Attention

Preferred

Non-preferred
Perceptual Confusability

Immediate perception
 • based on the first categorization
 • exponential

Mediate perception
 • based on accumulation of information

Bundesen & Harms (1999)
A Poisson Counter Model of Visual Identification

- One counter for each response j
- Tentative categorizations with a constant Poisson rate $\nu(i, j)$
- Highest counter \Rightarrow final categorization
- Ties are solved by guessing
- Perceptual threshold t_0
- Guesses with probability $P_g(j)$ on category j if all counters are zero
Perceptual Confusability

Oxford, Oct 24
Slide 16
Perceptual Confusability

Probability of Correct Report

Probability of False Report

Stimulus E

Stimulus SE

Stimulus S

Exposure Duration

Response

1 2 3 4 5 6 7 8

Stimulus

Response

1 2 3 4 5 6 7 8

Stimulus

Response

1 2 3 4 5 6 7 8

Stimulus

Response

1 2 3 4 5 6 7 8

Stimulus

Oxford, Oct 24
Slide 17
Perceptual Confusability

Oxford, Oct 24
Slide 18
Perceptual Confusability

Performance of 5 levels of contrast.
Fitted with PCM (solid lines)
errorbars: 95% confidence intervals of the proportions.
w: angular distance from true orientation of target Landolt.
Fitted with:
1 10
20 processing rates (5 contrast x 4 response categories)
8 guessing probabilities
1 P(no response)
Total 30 parameters to predict 175 independent response probabilities (5 contrast, 7 exposure durations, 5 response categories)
Perceptual Confusability
Modeling perceptual decisions and reaction times

Poisson Counter Model

- Collection of input in independent counters for each response type
- Counts are Poisson distributed
- *Absolute* threshold for each counter
- Non decision time constant
Modeling perceptual decisions and reaction times

Poisson Random Walk Model

- Collection of input in independent counters for each response type
- Counts are Poisson distributed
- *Relative difference* threshold for each counter
- Non decision time constant
Modeling perceptual decisions and reaction times

Accuracy

Reaction time

10-100 ms

RT

Estimate rates of processing

Accumulation rates
EEG and NTVA

- Relation between C and posterior N1
- Pre-stimulus alpha activity
- Relation between N2pc and weight and rate parameters
EEG and NTVA

(a) Processing Speed C

- Visual N1
 - high performers
 - low performers

Storage Capacity K

- Overall Delay Activity

(b) Difference Maps

- **Visual N1**
 - 135 ms
 - high – low processing speed

- **Overall Delay Activity**
 - 680 ms
 - high – low storage capacity

Oxford, Oct 24
Slide 25

Wiegard, Töllner, Habekost, Dyrholm, Müller, & Finke (2013)
EEG and NTVA

TASK

Contrast: 7% and 28%

Exposure times: 20, 40, 70, & 110ms
EEG and NTVA

RESULTS

Pre-stimulus alpha saliency

Left: topographic saliency map of alpha power from 500ms pre-stimulus period. Mid: Grand average ERP after filtering the raw EEG with individual alpha-band. Right: Circular means of phase distribution for correct and incorrect responses.

Low contrast

High contrast

Topography of phase difference (correct – incorrect) at low and high contrast. At low contrast, central occipital areas show large difference. At high contrast, the difference is no longer visible at occipital regions.
EEG and NTVA

Onset: ~180-200 ms

PO7/8

N2pc

600ms
Components of bias in single-stimulus recognition

Perceptual bias, β, is the product of three terms:

$$\beta_i = A \ p_i \ u_i$$

Alertness (A)
Subjective prior probability (p_i)
Subjective utility (u_i)

Investigate bias using **temporal expectations** to manipulate alertness:

- Waiting time paradigm with single stimulus recognition
- Exponentially distributed waiting times \Rightarrow constant levels of expectations over time
- Should affect processing speed but not perceptual thresholds

Oxford, Oct 24

Slide 29
Components of bias in single-stimulus recognition

High expectancy (1/6) | Low expectancy (1/12)

- High hazard rate ($\lambda = 1.33 \text{ s}^{-1}$)
- Low hazard rate ($\lambda = .22 \text{ s}^{-1}$)

Graph showing $f(t)$ vs. Time (ms)
Components of bias in single-stimulus recognition

Vangkilde, Coull & Bundesen (2012) JEP:HPP
Components of bias in single-stimulus recognition

Vangkilde, Coull & Bundesen (2012) JEP:HPP
Attention to Dopamine

Relationship between visual attention, dopamine, and ADHD.

Central hypotheses:

• TVA-based testing can profile changes in attentional functions in children and adults with ADHD
• Dopamine plays a critical role in modulating these functions
• Specific attentional alterations seen in ADHD patients can be reproduced in genetic mouse models.

WPs

• TVA-based neuropsychological testing in human subjects (ADHD children and adults, healthy controls) together with assessment of the brain dopamine balance by PET-scanning
• use genetic mouse models to link dopaminergic dysfunction at the molecular level to changes in attentional functions
• integrate behavioral characterization in genetic mouse models with TVA-based psychological testing in humans to develop new behavioral paradigms for ADHD.
ESRs 7 AND 8

- **Sustained attention to the task**
 - partial report by computing how efficiency of selection (parameter α) changes during the course of the test.
 - whole report, by computing how processing capacity (parameter C) changes over time.

- **Sensitivity to reward**
 - single-stimulus recognition paradigm in which correct detection of certain feature values is strongly rewarded and misses of the same values are strongly penalized, whereas detection of other feature values is only weakly rewarded and misses of these feature values are only weakly penalized.

- **Efficiency of task switching**
 - varying the selection criterion in partial report. The selection criterion may specified by a spoken cue (e.g., “blue”, “red”).