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Modelling the Human Brain:  
Resting and Task Evoked Activity 

The emergence of functional connectivity in 
spontaneous and evoked brain activity  



Basal and evoked states 

The BRAIN: 

Input 
Output  
(signal + “noise”) 



fMRI: new paradigm 

Spontaneous fluctuations and functional connectivity  

(Biswal et al., 1995) 

 

 

 

 

 

 

 

 

 

 

Low frequency (< 1 Hz) BOLD fluctuations in resting brain were 

observed to correlate within and between brain regions 

composing functional networks. 

Noise? 



Resting State: Fox et al 2005 (PNAS) 



Resting-State Networks 

Mantini et al. 2007 



Resting-State Networks, Evoked 
Networks, Anatomical Networks 

Vincent et al. (2007) Nature. 

Relation between  
anatomical connectivity and 
resting/evoked functional connectivity? 



Estimating the anatomical 
connectivity using Diffusion Imaging 

Tractography 

Hagmann et al. (2007) 



Modelling strategy 

Deco, Ponce-Alvarez et al. (2013)  
J Neurosci.  

Single-node models: 
Oscillatory dynamics  
Ghosh et al. 2008 
Deco et al. 2009 
Cabral et al. 2011 
 
Fixed stable point 
Honey et al. 2007  
 
Detailed spiking networks  
of excitatory and inhibitory  
populations coupled 
through synaptic dynamics 
Deco and Jirsa 2012 



Local cortical networks 
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The Balloon-Windkessel model 

Vessel ~ inflatable balloon 
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For the i-th region, synaptic activity zi causes 
an increase in a vasodilatory signal xi.  
Inflow fi responds to this signal with changes 
in blood volume vi and  
deoxyhemoglobin content qi. 

Riera et al. (2004) 



Spiking Model 

GxSC 
Weakly coupled 
network 

Strongly coupled 
network 
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GxSC 

200 Neurons per area x 66 areas 
      = 13200 Spiking Neurons 
40000 Synapses per area x 66 areas  
      = 2640000 synapses 
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Spiking Model 

GABA AMPA AMPA,  
NMDA 
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E 
… … 

200 Neurons per area x 66 areas 
      = 13200 Spiking Neurons 
40000 Synapses per area x 66 areas  
      = 2640000 synapses 

GxSC 

Deco, Ponce-Alvarez et al. (2013) J Neurosci.  

spontaneous 
state 

Attractors 



Mean Field Approximation 

… … 
NMDA Reduced 

dynamic 
mean field 
model 
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Population 
synaptic 
activity 

Mean field approx. 

linear approximation  
of the transfer function  
of the inhibitory cells  
(inhibitory cells  typically fire between 8 –15 Hz.  
Within this range, the F-I curve is almost linear) 
 

,NMDA AMPA GABA

Wong and Wang (2006) 

I 

f 



Mean Field Approximation 

The global brain dynamics of the network of inter-connected local networks is 
given by the following system of stochastic differential equations: 
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Where :  

: average firing rate of population i   

: synaptic gating variable at the local cortical area i 

: local excitatory recurrence 

: structural connectivity matrix expressing the neuroanatomical links 

between the areas i and j.  

: uncorrelated Gaussian noise 

0.001 (nA) : noise amplitude 

( )i t

0 0.3 (nA)I : effective external input 

100 msS : NMDA time constant 

(1) 



Mean Field Approximation 

Fixed points 

Deco, Ponce-Alvarez et al. (2013) J Neurosci.  



Mean Field Approximation 

Model FC VS. empirical FC 

Deco, Ponce-Alvarez et al. (2013) J Neurosci.  



Moments reduction: Analytical relation 
between structure and function 

( ) ( )i it S t

( ) ( ) ( ) ( ) ( )ij i i j jP t S t t S t t

Taylor expanding Si around μi, i.e. Si= μi+δSi,  
and keeping the terms up to <δSiδSj> : 

We express the system of stochastic 
differential equations (1) in terms 
of means and covariances:  

Fokker-Plank equation for the distribution of 
gating variables: 
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Qn : noise covariance matrix 
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Resting-State problem    



Moments reduction: Analytical relation 
between structure and function 

Power spectrum 



Moments reduction: Analytical relation 
between structure and function 

Deco, Ponce-Alvarez et al. (2013) J Neurosci.  

For a large range of parameters the 
best fit between model and data  
is close to the bifurcation 



Emergence of effective connectivity during 
task conditions 

T

n
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J   : Jacobian matrix 

Qn : noise covariance matrix 
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The covariance is 
state-dependent 

Deco, Ponce-Alvarez et al. (2013) J Neurosci.  



Emergence of effective connectivity during 
task conditions 

1
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  (20) 
  

   

mean covFI FI FI

The Fisher information (FI) gives an upper bound to the accuracy that any code can 
achieve. It takes into account the change of the mean activity and covariances with 
respect to a variation in the stimulus: 

s:      stimulus 

r(s):  network mean response 

P(s): network covariance   



Conclusions 

 We derived a simplified dynamical mean field model that 
summarizes the realistic dynamics of a detailed spiking and 
conductance-based synaptic large-scale model.  
 

 With this reduction, we demonstrated that FC emerges as 
structured linear fluctuations around a stable low firing activity 
state close to destabilization (criticality).  
 

 The model can be further and crucially simplified into a set of 
motion equations for statistical moments, providing a direct 
analytical link between anatomical structure, dynamics, and FC. 
  

 FC arises from noise propagation and dynamical slowing down of 
fluctuations in the anatomically constrained dynamical system. 
 

 The network’s covariance is state-dependent: the interactions 
between cortical areas depend on the dynamical state of the 
global network at which the Jacobian matrix is evaluated  
→ effective connectivity. 
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Limitations 

 Inter-hemispherical correlations in the model, because the 
DTI/DSI-tractography missed inter-hemispherical connections 
(due to fiber crossing issues).  
 

 The anatomical matrix used here did not include subcortical 
routes that are known to play an important role in shaping the 
spontaneous activity of the brain (Robinson et al., 2001; Freyer et 
al., 2011) 
 

 Model simplifying assumptions: all connections between brain 
areas are excitatory and instantaneous, thus neglecting the effects 
of feed-forward inhibition and conduction delays that are likely to 
shape spatial and temporal features of brain dynamics. 
  

 Mesoscopic architecture (layers, functional maps, etc) were not 
considered. 
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Balanced Networks 

Is the working point of the brain fine tuned (critical) ?  



Balanced Networks 

• Long-range correlations are highly and strongly structured in spatio-temporal patterns (Resting 
State Networks)  
• Neurophysiological reports show that short-range correlations between neighboring neurons 
are low, or even negligible (Ecker et al. 2010).  
• One proposed mechanism of decorrelation: feedback inhibition (Tetzlaff et al., 2012). 



Balanced Networks 



Balanced Networks 

Local feedback inhibition control 
(FIC) provides a better and more 
robust prediction of Human 
empirical resting state connectivity. 



Balanced Networks 

Regulating the local level of 
feedback inhibition in the 
brain has an important role at 
the global level: 
 
• It attenuates the response 
of cortical areas in the default 
mode network. 
 
• It increases the information 
capacity of the global 
network by increasing the 
entropy of the network’s 
evoked responses. 
 
• Ii increases the stimulus 
discriminability 



Effective dynamics 

Model validation 
during movie 
watching 



Effective dynamics 
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