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Basal and evoked states
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fMRI: new paradigm

Spontaneous fluctuations and functional connectivity
(Biswal et al., 1995)
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Low frequency (< 1 Hz) BOLD fluctuations in resting brain were
observed to correlate within and between brain regions
composing functional networks.



Resting State: Fox et al 2005 (PNAS)
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Resting-State Networks

-5.0 -1550 15
LLLLLLRRR L LLL LD

RSN 3

5.0 -1550 18
LLLLLRRRR LU

S50 1550 15
LLLLLRRRRRI L1 L)

5.0 1560 15
LLLLMLERRR L LLERERD

5.0 1550 15
nunnnnmmnm

RSN 6

P

S50 1550 18
LLLLLLERRRI L LR

Mantini et al




Resting-State Networks, Evoked

Networks, Anatomical Networks
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Vincent et al. (2007) Nature.

Relation between
anatomical connectivity and
resting/evoked functional connectivity?
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Estimating the anatomical
connectivity using Diffusion Imaging

3D displacement space

6D image

Hagmann et al. (2007)



Modelling strategy

Empirical Resting.

Correlation of BOLD signals

DTI/Tractography

Parcellation

Empirical functional
connectivity

Model
functional >
connectivity g -3

o Single-node models:
‘ - - ' Oscillatory dynamics

Ghosh et al. 2008
Deco et al. 2009
Cabral et al. 2011

Structural
connectivity

Fixed stable point
Honey et al. 2007

Detailed spiking networks
of excitatory and inhibitory

populations coupled

Deco, Ponce-Alvarez et al. (2013) through synaptic dynamics

J Neurosci.
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Local cortical networks

Synaptic Dynamics:
Isyn (t) =1 AMPA(t) + 1 NMDA(t) + IGABA(t)

Synapses
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The Balloon-Windkessel model
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Xi =7 — ki X —7, fi -1 For the i-th region, synaptic activity z; causes
. an increase in a vasodilatory signal x;.
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Spiking Model

200 Neurons per area x 66 areas
= 13200 Spiking Neurons

40000 Synapses per area x 66 areas
= 2640000 synapses
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Spiking Model

200 Neurons per area x 66 areas
= 13200 Spiking Neurons
40000 Synapses per area x 66 areas

= 2640000 synapses
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Mean Field Approximation

— GABA

Neurons
linear approximation
of the transfer function
of the inhibitory cells Mean field approx.
(inhibitory cells typically fire between 8 —15 Hz.
Within this range, the F-I curve is almost linear) z-NMDA >> z-AMPA ! z'-GABA
f
Wong and Wang (2006)

Reduced Popula-tlon
d . synaptic
ynamic e activity

mean field

model



Mean Field Approximation

The global brain dynamics of the network of inter-connected local networks is
given by the following system of stochastic differential equations:

GO __S L 1-s)yH ) +ou )
dt Ts
OO ax. —b (1)

" 1-exp(~d(ax, —b))

X =WJ S, +GJy > CyS; + 1,
]

Where: S : synaptic gating variable at the local cortical area i

R =H(X) :average firing rate of population i

w=0.9 - local excitatory recurrence

- structural connectivity matrix expressing the neuroanatomical links
between the areas i and j.

7, =100 ms : NMDA time constant
v (t) : uncorrelated Gaussian noise
o =0.001 (nA) : noise amplitude

I, =0.3 (nA) : effective external input



Mean Field Approximation
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Mean Field Approximation

Model FC VS. empirical FC
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Moments reduction: Analytical relation

between structure and function

We express the system of stochastic

differential equations (1) in terms % =f(u)= _iﬂi +(1L—)yH(X)
of means and covariances: dt (B
14 (t) = <Si (t)> 1P
PO =(SO)-4® [S,0-0]) P PIT+Q,
. . of
Fokker-Plank equation for the distribution of J :Jacobian matrix ‘]ij = ? (4)
gating variables: j

, , : noise covariance matrix
Taylor expanding S; around u,, i.e. S= u+6S, Q”

and keeping the terms up to <65,6S> :

JP+PJ"+Q, =0

Resting-State problem <mmmm) JP+PJ' +Q =0



Moments reduction: Analytical relation

between structure and function
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Moments reduction: Analytical relation

between structure and function

FC spiking FC dynamical FC moments
FC empirical model mean field method
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Emergence of effective connectivity during

task conditions

dP
—=JP+PJ'" +
dt <

, , of The covariance is
J :Jacobian matrix Jij =— (@) »
S, state-dependent
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Q, : noise covariance matrix
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Emergence of effective connectivity during

task conditions

The Fisher information (FI) gives an upper bound to the accuracy that any code can
achieve. It takes into account the change of the mean activity and covariances with
respect to a variation in the stimulus:

FIl=FI__ +FI

mean cov

Fisher Information

10000

FI FI __=r'(s) P(s)™r'(s)
— «FI
mean 1 , e
5000 | el Flis, (5) =~ Trace | P'(S)P(s)™ |
s.  stimulus
r(s): network mean response
Q e ' . P(s): network covariance
1 1.5 2 2.5 3

Global coupling (G)



Conclusions

O We derived a simplified dynamical mean field model that
summarizes the realistic dynamics of a detailed spiking and
conductance-based synaptic large-scale model.
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Conclusions

O We derived a simplified dynamical mean field model that
summarizes the realistic dynamics of a detailed spiking and
conductance-based synaptic large-scale model.

O With this reduction, we demonstrated that FC emerges as
structured linear fluctuations around a stable low firing activity
state close to destabilization (criticality).

L The model can be further and crucially simplified into a set of
motion equations for statistical moments, providing a direct
analytical link between anatomical structure, dynamics, and FC.

L FC arises from noise propagation and dynamical slowing down of
fluctuations in the anatomically constrained dynamical system.

L The network’s covariance is state-dependent: the interactions
between cortical areas depend on the dynamical state of the
global network at which the Jacobian matrix is evaluated
— effective connectivity.
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DTI/DSI-tractography missed inter-hemispherical connections
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Limitations

O Inter-hemispherical correlations in the model, because the
DTI/DSI-tractography missed inter-hemispherical connections
(due to fiber crossing issues).

O The anatomical matrix used here did not include subcortical
routes that are known to play an important role in shaping the
spontaneous activity of the brain (Robinson et al., 2001; Freyer et
al., 2011)

0 Model simplifying assumptions: all connections between brain
areas are excitatory and instantaneous, thus neglecting the effects
of feed-forward inhibition and conduction delays that are likely to
shape spatial and temporal features of brain dynamics.

L Mesoscopic architecture (layers, functional maps, etc) were not
considered.



Balanced Networks

Is the working point of the brain fine tuned (critical) ?



Balanced Networks

* Long-range correlations are highly and strongly structured in spatio-temporal patterns (Resting
State Networks)

* Neurophysiological reports show that short-range correlations between neighboring neurons
are low, or even negligible (Ecker et al. 2010).

* One proposed mechanism of decorrelation: feedback inhibition (Tetzlaff et al., 2012).
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Balanced Networks
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Balanced Networks
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Balanced Networks
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Effective dynamics

Model validation
during movie
watching

rBSTS

T T T T T T T T T T TTTTT T T TT T T T T T TTTTTI

T

FTTT T T T T T T T T T T T T T T T T T T T T T TTIT T T T T T TTIT T

=

:

=

-01 -0. 05

005 01 015 02 025 03 035 04
Mean BOLD (% change)

Empirical data

Simulated data

[ .
Mean BOLD (% change)



Effective dynamics
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