Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

<jats:p> Recent behavioral modeling and pupillometry studies suggest that neuromodulatory arousal systems play a role in regulating decision formation but neurophysiological support for these observations is lacking. We employed a randomized, double-blinded, placebo-controlled, crossover design to probe the impact of pharmacological enhancement of catecholamine levels on perceptual decision-making. Catecholamine levels were manipulated using the clinically relevant drugs methylphenidate and atomoxetine, and their effects were compared with those of citalopram and placebo. Participants performed a classic EEG oddball paradigm that elicits the P3b, a centro-parietal potential that has been shown to trace evidence accumulation, under each of the four drug conditions. We found that methylphenidate and atomoxetine administration shortened RTs to the oddball targets. The neural basis of this behavioral effect was an earlier P3b peak latency, driven specifically by an increase in its buildup rate without any change in its time of onset or peak amplitude. This study provides neurophysiological evidence for the catecholaminergic enhancement of a discrete aspect of human decision-making, that is, evidence accumulation. Our results also support theoretical accounts suggesting that catecholamines may enhance cognition via increases in neural gain. </jats:p>

Original publication

DOI

10.1162/jocn_a_01393

Type

Journal article

Journal

Journal of Cognitive Neuroscience

Publisher

MIT Press - Journals

Publication Date

07/2019

Volume

31

Pages

1044 - 1053