Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Humans and other animals effortlessly generalize prior knowledge to solve novel problems, by abstracting common structure and mapping it onto new sensorimotor specifics. To investigate how the brain achieves this, in this study, we trained mice on a series of reversal learning problems that shared the same structure but had different physical implementations. Performance improved across problems, indicating transfer of knowledge. Neurons in medial prefrontal cortex (mPFC) maintained similar representations across problems despite their different sensorimotor correlates, whereas hippocampal (dCA1) representations were more strongly influenced by the specifics of each problem. This was true for both representations of the events that comprised each trial and those that integrated choices and outcomes over multiple trials to guide an animal's decisions. These data suggest that prefrontal cortex and hippocampus play complementary roles in generalization of knowledge: PFC abstracts the common structure among related problems, and hippocampus maps this structure onto the specifics of the current situation.

Original publication

DOI

10.1038/s41593-022-01149-8

Type

Journal article

Journal

Nat Neurosci

Publication Date

10/2022

Volume

25

Pages

1314 - 1326

Keywords

Animals, Generalization, Psychological, Hippocampus, Humans, Mice, Neurons, Prefrontal Cortex