We modeled discrimination thresholds for object colors under different lighting environments [J. Opt. Soc. Am. 35, B244 (2018)]. First, we built models based on chromatic statistics, testing 60 models in total. Second, we trained convolutional neural networks (CNNs), using 160,280 images labeled by either the ground-truth or human responses. No single chromatic statistics model was sufficient to describe human discrimination thresholds across conditions, while human-response-trained CNNs nearly perfectly predicted human thresholds. Guided by region-of-interest analysis of the network, we modified the chromatic statistics models to use only the lower regions of the objects, which substantially improved performance.
Journal article
J Opt Soc Am A Opt Image Sci Vis
15/02/2023
40
A149 - A159
Humans, Color Perception, Lighting, Neural Networks, Computer, Models, Statistical