Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The human brain prioritises relevant sensory information to perform different tasks. Enhancement of task-relevant information requires flexible allocation of attentional resources, but it is still a mystery how this is operationalised in the brain. We investigated how attentional mechanisms operate in situations where multiple stimuli are presented in the same location and at the same time. In two experiments, participants performed a challenging two-back task on different types of visual stimuli that were presented simultaneously and superimposed over each other. Using electroencephalography and multivariate decoding, we analysed the effect of attention on the neural responses to each individual stimulus. Whole brain neural responses contained considerable information about both the attended and unattended stimuli, even though they were presented simultaneously and represented in overlapping receptive fields. As expected, attention increased the decodability of stimulus-related information contained in the neural responses, but this effect was evident earlier for stimuli that were presented at smaller sizes. Our results show that early neural responses to stimuli in fast-changing displays contain remarkable information about the sensory environment but are also modulated by attention in a manner dependent on perceptual characteristics of the relevant stimuli. Stimuli, code, and data for this study can be found at https://osf.io/7zhwp/.

Original publication

DOI

10.51628/001c.21174

Type

Journal article

Journal

Neurons, Behavior, Data analysis, and Theory

Publisher

The Neurons Behavior Data Analysis and Theory collective

Publication Date

17/02/2021

Volume

5