Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Aging has been associated with declined performance in tasks that rely on working memory (WM). Because attention and WM are tightly coupled, declined performance on a WM task in older adults could be due to deficits in attention, memory capacity, or both. We used alpha (8-14 Hz) power modulations as an index to assess how changes in attention and memory capacity contribute to decreased WM performance in older adults. We recorded the magnetoencephalogram in healthy older (60-76 years) and younger adults (18-28 years) while they performed a lateralized WM task. At matched difficulty, older adults showed significantly lower memory spans than younger adults. Alpha lateralization during retention was nearly absent in older adults due to a bilateral reduction of alpha power. By contrast, in younger adults alpha power was reduced only contralateral to the attended hemifield. Surprisingly, during the cue interval, both groups showed equal alpha lateralization. The preserved alpha lateralization during attentional cueing, and lack thereof during retention, suggests that reduced WM performance in older adults is due to deficits in WM-related processes, not deficits in attentional orienting, and that a compensatory mechanism in aging permits significant residual WM performance in the absence of alpha lateralization.

Original publication

DOI

10.1093/cercor/bhw345

Type

Journal article

Journal

Cereb Cortex

Publication Date

01/01/2018

Volume

28

Pages

21 - 32

Keywords

MEG, attention, healthy aging, oscillations, Adolescent, Adult, Aged, Alpha Rhythm, Attention, Brain, Cues, Functional Laterality, Healthy Aging, Humans, Magnetic Resonance Imaging, Magnetoencephalography, Memory, Short-Term, Middle Aged, Neuropsychological Tests, Reaction Time, Visual Perception, Young Adult