Zero-shot counting with a dual-stream neural network model.

Thompson JAF., Sheahan H., Dumbalska T., Sandbrink JD., Piazza M., Summerfield C.

To understand a visual scene, observers need to both recognize objects and encode relational structure. For example, a scene comprising three apples requires the observer to encode concepts of "apple" and "three." In the primate brain, these functions rely on dual (ventral and dorsal) processing streams. Object recognition in primates has been successfully modeled with deep neural networks, but how scene structure (including numerosity) is encoded remains poorly understood. Here, we built a deep learning model, based on the dual-stream architecture of the primate brain, which is able to count items "zero-shot"-even if the objects themselves are unfamiliar. Our dual-stream network forms spatial response fields and lognormal number codes that resemble those observed in the macaque posterior parietal cortex. The dual-stream network also makes successful predictions about human counting behavior. Our results provide evidence for an enactive theory of the role of the posterior parietal cortex in visual scene understanding.

DOI

10.1016/j.neuron.2024.10.008

Type

Journal article

Journal

Neuron

Publication Date

29/10/2024

Keywords

PPC, attention, dorsal stream, enactive cognition, enumeration, neural networks, numerical cognition, structure learning, visual reasoning, zero-shot generalization

Permalink Original publication