Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The developmental period from infancy to early childhood is one of substantial change - in advancements in cognitive skills, such as early executive functions, but also in the maturation of the prefrontal and parietal cortices that parallel such advances. The current study aims to investigate the emergence and development of inhibitory control, a core executive function, from infancy to early childhood. We collected longitudinal functional near-infrared spectroscopy (fNIRS) data from the same sample of participants at 10-months, 16-months, and 3½ years of age whilst they completed the Early Childhood Inhibitory Touchscreen Task. In our previous publications, we reported that 10-month-old infants recruited right lateralised regions of the prefrontal and parietal cortex when inhibition was required. Despite no change in response inhibition performance, 16-month-olds recruited broader and bilateral regions of the prefrontal and parietal cortex. Results of the current study found that 3½-year-olds activated regions of the right inferior parietal cortex and the right inferior frontal gyrus when inhibition was required. Response inhibition performance was significantly improved by early childhood, yet there was commonality in the brain regions recruited at 16-months and 3½ years. This could suggest that these brain regions are fundamental neural indices of inhibitory control, even from toddlerhood.

Original publication

DOI

10.1016/j.dcn.2025.101557

Type

Journal article

Journal

Dev Cogn Neurosci

Publication Date

26/03/2025

Volume

73

Keywords

Executive function, Functional near-infrared spectroscopy, Parietal cortex, Prefrontal cortex, Response inhibition