Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

PET was used to image the neural system underlying visuospatial attention. Analysis of data at both the group and individual-subject level provided anatomical resolution superior to that described to date. Six right-handed male subjects were selected from a pilot behavioural study in which behavioural responses and eye movements were recorded. The attention tasks involved covert shifts of attention, where peripheral cues indicated the location of subsequent target stimuli to be discriminated. One attention condition emphasized reflexive aspects of spatial orientation, while the other required controlled shifts of attention. PET activations agreed closely with the cortical regions recently proposed to form the core of a neural network for spatial attention. The two attention tasks evoked largely overlapping patterns of neural activation, supporting the existence of a general neural system for visuospatial attention with regional functional specialization. Specifically, neocortical activations were observed in the right anterior cingulate gyrus (Brodmann area 24), in the intraparietal sulcus of right posterior parietal cortex, and in the mesial and lateral premotor cortices (Brodmann area 6).

Type

Journal article

Journal

Brain

Publication Date

03/1997

Volume

120 ( Pt 3)

Pages

515 - 533

Keywords

Attention, Brain, Brain Mapping, Frontal Lobe, Functional Laterality, Humans, Male, Motor Cortex, Parietal Lobe, Prefrontal Cortex, Psychomotor Performance, Spatial Behavior, Tomography, Emission-Computed, Vision, Ocular