Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: Previous studies have shown smaller brain volume and less gray matter in children with attention-deficit/hyperactivity disorder (ADHD). Relatively few morphological studies have examined structures thought to subserve inhibitory control, one of the diagnostic features of ADHD. We examined one such region, the pars opercularis, predicting a thinner cortex of the inferior frontal gyrus (IFG) in children with ADHD. METHOD: Structural images were obtained from 49 children (24 control; 25 ADHD combined subtype) aged 9 though 15 years. Images were processed using a volumetric pipeline to provide a fully automated estimate of regional volumes of gray and white matter. A further analysis using FreeSurfer provided measures of cortical thickness for each lobe, and for 13 regions in the frontal lobe. RESULTS: Relative to controls, children with ADHD had smaller whole brain volume and lower gray matter, but not white matter, volumes in all lobes. An analysis of frontal regions showed a significant interaction of group by region. Planned contrasts showed bilateral thinner cortex in the pars opercularis in children with ADHD. CONCLUSIONS: Children with ADHD showed both diffuse and regional gray matter abnormalities. Consistent with its putative role in response inhibition, the cortex of the pars opercularis was thinner in children with ADHD who, as expected, had significantly poorer inhibitory performance on a Go/No-go task. These differences held for both hemispheres raising the possibility that a developmental abnormality of IFG might drive development of inhibition difficulties.

Type

Journal article

Journal

J Am Acad Child Adolesc Psychiatry

Publication Date

03/2010

Volume

49

Pages

229 - 238

Keywords

Adolescent, Attention Deficit Disorder with Hyperactivity, Brain, Cerebral Cortex, Child, Dominance, Cerebral, Female, Frontal Lobe, Humans, Image Processing, Computer-Assisted, Inhibition (Psychology), Magnetic Resonance Imaging, Male, Neural Pathways, Neuropsychological Tests, Organ Size, Reference Values, Software