Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Damage to the medial region of the thalamus, both in clinical cases (e.g., patients with infarcts or the Korsakoff's syndrome) and animal lesion models, is associated with variable amnesic deficits. Some studies suggest that many of these memory deficits rely on the presence of lateral thalamic lesions (LT) that include the intralaminar nuclei, presumably by altering normal function between the striatum and frontal cortex. Other studies suggest that the anterior thalamic nuclei (AT) may be more critical, as a result of disruption to an extended hippocampal system. Here, highly selective LT and AT lesions were made to test the prediction that these two regions contribute to two different memory systems. Only LT lesions produced deficits on a preoperatively acquired response-related (egocentric) working memory task, tested in a cross-maze. Conversely, only AT lesions impaired postoperative acquisition of spatial working memory, tested in a radial maze. These findings provide the first direct evidence of a double dissociation between the LT and AT neural aggregates. As the lateral and the anterior medial thalamus influence parallel independent memory processing systems, they may each contribute to memory deficits, depending on lesion extent in clinical and experimental cases of thalamic amnesia.

Original publication

DOI

10.1101/lm.122206

Type

Journal article

Journal

Learn Mem

Publication Date

05/2006

Volume

13

Pages

388 - 396

Keywords

Amnesia, Animals, Anterior Thalamic Nuclei, Disease Models, Animal, Female, Intralaminar Thalamic Nuclei, Maze Learning, Memory, Rats