Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Variable neuropathology in cases of diencephalic amnesia has led to uncertainty in identifying key thalamic nuclei and their potential role in learning and memory. Based on the principal neural connections of the medial thalamus, the current study tested the hypothesis that different aggregates of thalamic nuclei contribute to separate memory systems. Lesions of the anterior thalamic aggregate (AT), which comprises the anterodorsal, anteromedial and anteroventral nuclei produced substantial deficits in both working and reference spatial memory in a radial arm maze task in rats, supporting the view that the AT is an integral part of a hippocampal memory system. Lesions to the lateral thalamic aggregate (LT), which comprises the intralaminar nuclei (centrolateral, paracentral and rostral central medial nuclei) and lateral mediodorsal thalamic nuclei (lateral and paralamellar nuclei) produced a mild working memory impairment only, while lesions to the posteromedial thalamic aggregate (MT), which comprises the central and medial mediodorsal thalamic nuclei and the intermediodorsal nucleus had no effect on radial arm maze performance. In contrast, only MT lesions impaired learning associated with memory for reward value, consistent with the idea that the MT contributes to an amygdala memory system. Compared with chance discrimination, the control and AT groups, but not MT or LT groups, showed evidence for temporal order memory for two recently presented objects; all groups showed intact object recognition for novel vs. familiar objects. These new dissociations show that different medial thalamic aggregates participate in multiple memory systems and reinforce the idea that memory deficits in diencephalic amnesics may vary as a function of the relative involvement of different thalamic regions.

Original publication

DOI

10.1111/j.1460-9568.2005.04199.x

Type

Journal article

Journal

Eur J Neurosci

Publication Date

08/2005

Volume

22

Pages

973 - 985

Keywords

Animals, Behavior, Animal, Brain Mapping, Discrimination (Psychology), Environment, Female, Maze Learning, Memory Disorders, Memory, Short-Term, Rats, Recognition (Psychology), Reward, Spatial Behavior, Statistics as Topic, Thalamus