Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Alternative splicing of the Drosophila melanogaster Rdl gene yields four ionotropic GABA receptor subunits. The two Rdl splice variants cloned to date, RDL(ac) and RDL(bd) (DRC17-1-2), differ in their apparent agonist affinity. Here, we report the cloning of a third splice variant of Rdl, RDL(ad). Two-electrode voltage clamp electrophysiology was used to investigate agonist pharmacology of this expressed subunit following cRNA injection into Xenopus laevis oocytes. The EC(so) values for GABA and its analogues isoguvacine, muscimol, isonipecotic acid and 3-amino sulphonic acid on the RDL(ad) homomeric receptor differed from those previously described for RDL(ac) and DRC17-1-2 receptors. In addition to providing a possible physiological role for the alternative splicing of Rdl, these data delineate a hitherto functionally unassigned region of the N-terminal domain of GABA receptor subunits, which affects agonist potency and aligns closely with known determinants of potency in nicotinic acetylcholine receptors. Thus, using expression in Xenopus oocytes, we have demonstrated differences in agonist potency for the neurotransmitter GABA (and four analogues) between splice variant products of the Drosophila melanogaster Rdl gene encoding homomer-forming GABA receptor subunits.


Journal article



Publication Date





709 - 714


Alternative Splicing, Amino Acid Sequence, Animals, Drosophila Proteins, Drosophila melanogaster, Embryo, Nonmammalian, Exons, Female, GABA Agonists, Gene Library, Genetic Variation, In Vitro Techniques, Isonicotinic Acids, Isonipecotic Acids, Membrane Potentials, Molecular Sequence Data, Muscimol, Oocytes, Patch-Clamp Techniques, Protein Subunits, Receptors, GABA-A, Recombinant Proteins, Sulfonic Acids, Xenopus laevis, gamma-Aminobutyric Acid