Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This paper examines and contrasts motion-parallax analogues of the induced-size and induced-shear effects with the equivalent induced effects from binocular disparity. During lateral head motion or with binocular stereopsis, vertical-shear and vertical-size transformations produced 'induced effects' of apparent inclination and slant that are not predicted geometrically. With vertical head motion, horizontal-shear and horizontal-size transformations produced similar analogues of the disparity induced effects. Typically, the induced effects were opposite in direction and slightly smaller in size than the geometric effects. Local induced-shear and induced-size effects could be elicited from motion parallax, but not from disparity, and were most pronounced when the stimulus contained discontinuities in velocity gradient. The implications of these results are discussed in the context of models of depth perception from disparity and structure from motion.


Journal article


Vision Res

Publication Date





1879 - 1893


Depth Perception, Head Movements, Humans, Motion Perception, Vision Disparity, Vision, Binocular