Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

In visual search, the presence of a highly salient color singleton can slow or facilitate search for a shape target depending on whether the singleton is a distractor or coincides with the target. This is consistent with an attentional shift (attentional capture) to the salient item. This attentional capture can be driven by bottom-up or top-down processes or both. We investigated the role of the parietal cortex in attentional capture by a singleton using repetitive transcranial magnetic stimulation. Following disruption to the right posterior parietal cortex by sustained transcranial magnetic stimulation, the reaction time (RT) cost of the singleton distractor was reduced. At least part of this lessening of singleton distraction was due to the elimination of priming (top-down) effects between target and distractor singletons on consecutive trials. In Experiment 2, we presented the different conditions in separate blocks meaning any effects of the distractor can most likely be attributed to bottom-up processes. Nevertheless, there was still a decrease in RT interference from the distractor so that a reduction in priming cannot provide a full account of the results. The data are consistent with previous work positing that the right parietal cortex directs attention to salient stimuli (e.g., Constantinidis 2005, Mevorach et al. 2006), while also suggesting a role for the right parietal cortex in the integration of bottom-up salience information with memories for salient features on prior trials.

Original publication

DOI

10.1093/cercor/bhn070

Type

Journal article

Journal

Cereb Cortex

Publication Date

01/2009

Volume

19

Pages

106 - 114

Keywords

Adult, Attention, Cues, Female, Humans, Male, Mental Recall, Parietal Lobe, Pattern Recognition, Visual, Perceptual Masking, Task Performance and Analysis, Transcranial Magnetic Stimulation