Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Aging is a major co-risk factor in many neurodegenerative diseases. Cognitive enrichment positively affects the structural plasticity of the aging brain. In this study, we evaluated effects of a set of structured multimodal activities (Combination Training; CT) on cognitive performances, functional connectivity, and cortical thickness of a group of healthy elderly individuals. CT lasted six months. METHODOLOGY: Neuropsychological and occupational performances were evaluated before and at the end of the training period. fMRI was used to assess effects of training on resting state network (RSN) functional connectivity using Independent Component Analysis (ICA). Effects on cortical thickness were also studied. Finally, we evaluated whether specific dopamine-related genes can affect the response to training. PRINCIPAL FINDINGS: Results of the study indicate that CT improves cognitive/occupational performances and reorganizes functional connectivity. Intriguingly, individuals responding to CT showed specific dopamine-related genotypes. Indeed, analysis of dopamine-related genes revealed that carriers of DRD3 ser9gly and COMT Val158Met polymorphisms had the greatest benefits from exposure to CT. CONCLUSIONS AND SIGNIFICANCE: Overall, our findings support the idea that exposure to a set of structured multimodal activities can be an effective strategy to counteract aging-related cognitive decline and also indicate that significant capability of functional and structural changes are maintained in the elderly.

Original publication

DOI

10.1371/journal.pone.0043901

Type

Journal article

Journal

PLoS One

Publication Date

2012

Volume

7

Keywords

Activities of Daily Living, Aged, Aging, Brain Mapping, Catechol O-Methyltransferase, Cerebral Cortex, Cognition, Exercise, Female, Functional Neuroimaging, Humans, Magnetic Resonance Imaging, Male, Nerve Net, Neuropsychological Tests, Polymorphism, Single Nucleotide, Receptors, Dopamine D3