Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Mass spectrometry (MS) is becoming the gold standard for biomarker discovery. Several MS-based bioinformatics methods have been proposed for this application, but the divergence of the findings by different research groups on the same MS data suggests that the definition of a reliable method has not been achieved yet. In this work, we propose an integrated software platform, MASCAP, intended for comparative biomarker detection from MALDI-TOF MS data. RESULTS: MASCAP integrates denoising and feature extraction algorithms, which have already shown to provide consistent peaks across mass spectra; furthermore, it relies on statistical analysis and graphical tools to compare the results between groups. The effectiveness in mass spectrum processing is demonstrated using MALDI-TOF data, as well as SELDI-TOF data. The usefulness in detecting potential protein biomarkers is shown comparing MALDI-TOF mass spectra collected from serum and plasma samples belonging to the same clinical population. CONCLUSIONS: The analysis approach implemented in MASCAP may simplify biomarker detection, by assisting the recognition of proteomic expression signatures of the disease. A MATLAB implementation of the software and the data used for its validation are available at http://www.unich.it/proteomica/bioinf.

Original publication

DOI

10.1016/j.jprot.2009.11.004

Type

Journal article

Journal

J Proteomics

Publication Date

03/01/2010

Volume

73

Pages

562 - 570

Keywords

Algorithms, Autoimmune Diseases, Biomarkers, Blood Chemical Analysis, Blood Proteins, Cluster Analysis, Computational Biology, Data Interpretation, Statistical, Humans, Plasma, Serum, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization