Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The trophic effect of continuous intraventricular infusion of nerve growth factor (NGF) on morphology of the basal forebrain (BF) cholinergic neurons was tested in 4- and 28-month-old male Wistar rats. All studies were conducted using behaviorally uncharacterized animals from the same breeding colony. Immunohistochemical procedure for choline acetyltransferase (ChAT) and p75NTR receptor has been applied to identify cholinergic cells in the structures of basal forebrain (BF). Using a quantitative image analyzer, morphometric and densitometric parameters of ChAT- and p75NTR-positive cells were measured immediately after cessation of NGF infusion. In 28-month-old non-treated rats the number of intensively ChAT-positive cells in all forebrain structures was reduced by 50-70% as compared with young animals. The remaining ChAT-positive cells appeared shrunken and the neuropil staining was NTR markedly reduced. In contrast, the same neurons when stained for p75 were numerous and distinctly visible with perfect morphology. Analysis of Nissl stained sections also showed that 28-month-old rats did not display significant losses of neuronal cell bodies. NGF restored the number of intensely stained ChAT-positive cells to about 90% of that for young controls and caused a significant increase in size of those cells in 28-month-old rats as compared with the control, age-matched group. NGF did not influence the morphology of p75NTR-positive neurons, which were well labeled, irrespective of treatment and age of the rats. In 4-month-old rats, NGF infusion decreased the intensity of both ChAT and p75NTR immunostaining. These data provide some evidence for preservation of BF cholinergic neurons from atrophy during aging and indicate that senile impairment of the cholinergic system in rats concerns decrease in ChAT-protein expression rather than an acute degeneration of neuronal cell bodies. Treatment with NGF resulted in restoration of cholinergic phenotype in the BF neurons of aged rats. However, the present study also rises issue of possible detrimental effects of NGF in young normal animals.


Journal article


Acta Biochim Pol

Publication Date





313 - 330


Aging, Animals, Cerebral Cortex, Cerebral Ventricles, Choline O-Acetyltransferase, Infusions, Parenteral, Limbic System, Male, Nerve Growth Factor, Neurons, Organ Specificity, Prosencephalon, Rats, Rats, Wistar, Receptors, Nerve Growth Factor, Substantia Innominata