Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Motion-induced blindness (MIB), the illusory disappearance of local targets against a moving mask, has been attributed to both low-level stimulus-based effects and high-level processes, involving selection between local and more global stimulus contexts. Prior work shows that MIB is modulated by binocular disparity-based depth-ordering cues. We assessed whether the depth effect is specific to disparity by studying how monocular 3-D surface from motion affects MIB. Monocular kinetic depth cues were used to create a global 3-D hourglass with concave and convex surfaces. MIB increased for stationary targets on the convex relative to the concave area, extending the role of 3-D cues. Interestingly, this convexity effect was limited to the left visual field--replicating spatial anisotropies in MIB. The data indicate a causal role of general 3-D surface coding in MIB, consistent with MIB being affected by high-level, visual representations.

Type

Journal article

Journal

Perception

Publication Date

2013

Volume

42

Pages

1353 - 1361

Keywords

Adolescent, Adult, Anisotropy, Attention, Cues, Depth Perception, Female, Humans, Male, Motion Perception, Optical Illusions, Vision Disparity, Young Adult