Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Specific language impairment (SLI) is a neurodevelopmental disorder that affects linguistic abilities when development is otherwise normal. We report the results of a genome-wide association study of SLI which included parent-of-origin effects and child genotype effects and used 278 families of language-impaired children. The child genotype effects analysis did not identify significant associations. We found genome-wide significant paternal parent-of-origin effects on chromosome 14q12 (P = 3.74 × 10(-8)) and suggestive maternal parent-of-origin effects on chromosome 5p13 (P = 1.16 × 10(-7)). A subsequent targeted association of six single-nucleotide-polymorphisms (SNPs) on chromosome 5 in 313 language-impaired individuals and their mothers from the ALSPAC cohort replicated the maternal effects, albeit in the opposite direction (P = 0.001); as fathers' genotypes were not available in the ALSPAC study, the replication analysis did not include paternal parent-of-origin effects. The paternally-associated SNP on chromosome 14 yields a non-synonymous coding change within the NOP9 gene. This gene encodes an RNA-binding protein that has been reported to be significantly dysregulated in individuals with schizophrenia. The region of maternal association on chromosome 5 falls between the PTGER4 and DAB2 genes, in a region previously implicated in autism and ADHD. The top SNP in this association locus is a potential expression QTL of ARHGEF19 (also called WGEF) on chromosome 1. Members of this protein family have been implicated in intellectual disability. In summary, this study implicates parent-of-origin effects in language impairment, and adds an interesting new dimension to the emerging picture of shared genetic etiology across various neurodevelopmental disorders.

Original publication




Journal article


Genes Brain Behav

Publication Date





418 - 429


ALSPAC, GWAS, imprinting, neurodevelopmental disorder, specific language impairment, Adaptor Proteins, Signal Transducing, Adult, Apraxias, Child, Chromosomes, Human, Female, Genome-Wide Association Study, Genomic Imprinting, Genotype, Guanine Nucleotide Exchange Factors, Humans, Male, Polymorphism, Single Nucleotide, Quantitative Trait Loci, RNA-Binding Proteins, Receptors, Prostaglandin E, EP4 Subtype, Tumor Suppressor Proteins