Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We examined the effects of number magnitude (within vs. outside the subitizable range) and notation (symbolic vs. nonsymbolic number) on neural responses to visual displays in the human brain using fMRI at 7T. We found that the right temporoparietal junction (rTPJ) responded more strongly to small than to larger numbers (2, 4 > 6, 8), while there was greater activity bilaterally within and around the intraparietal sulcus (IPS) as number magnitude increased (6, 8 > 2, 4). The effects of number magnitude were greatest for nonsymbolic stimuli. In addition, there was striking overlap between rTPJ regions responding to small numbers and those most strongly activated by symbolic stimuli, and between IPS regions responding to large numbers and those most activated by nonsymbolic stimuli. The results are consistent with distinct neural processes recruited for the processing of small- and large-number magnitudes. Contributions due to differences in representing exact number (small nonsymbolic arrays and all symbolic numbers, in rTPJ) and overall magnitude (particularly with large nonsymbolic arrays, in IPS), and the associated theoretical implications of the findings, are discussed.

Original publication

DOI

10.1093/cercor/bht074

Type

Journal article

Journal

Cereb Cortex

Publication Date

08/2014

Volume

24

Pages

2199 - 2209

Keywords

fMRI at 7T, intraparietal sulcus, numerical cognition, right TPJ, Brain, Brain Mapping, Female, Humans, Magnetic Resonance Imaging, Male, Mathematical Concepts, Mental Processes, Photic Stimulation, Visual Perception, Young Adult