Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Patients with bilateral optic ataxia fail to show rapid perturbation-induced corrections during manual aiming movements. Based on this, it has been proposed that this pathology results from a disruption of processes of on-line motor control in the posterior parietal cortex (PPC). Here, we show that on-line motor control performance in a patient with unilateral optic ataxia is similar to that of pointing towards stationary targets in peripheral vision, showing the same combination of hand and field effects. We also show that in the patient, manual correction towards his ataxic field was possible only when a preceding saccade (100msec earlier) rapidly provides foveal information about the new target location. In control subjects, manual correction was often, but not necessarily preceded by a saccade. These results allow us to put forward a model of visuo-manual transformation, which involves updating of the reach plan based on the target-eye error, and rely upon two dissociated spatial representations (of the hand and of the target, respectively) within the PPC.

Original publication




Journal article



Publication Date





560 - 568


Adult, Ataxia, Case-Control Studies, Cerebral Infarction, Eye Diseases, Eye Movements, Functional Laterality, Hand, Humans, Male, Matched-Pair Analysis, Movement, Psychomotor Performance, Reaction Time, Reference Values, Space Perception, Visual Fields