Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Motor imagery (MI) combined with real-time electroencephalogram (EEG) feedback is a popular approach for steering brain-computer interfaces (BCI). MI BCI has been considered promising as add-on therapy to support motor recovery after stroke. Yet whether EEG neurofeedback indeed targets specific sensorimotor activation patterns cannot be unambiguously inferred from EEG alone. We combined MI EEG neurofeedback with concurrent and continuous functional magnetic resonance imaging (fMRI) to characterize the relationship between MI EEG neurofeedback and activation in cortical sensorimotor areas. EEG signals were corrected online from interfering MRI gradient and ballistocardiogram artifacts, enabling the delivery of real-time EEG feedback. Significantly enhanced task-specific brain activity during feedback compared to no feedback blocks was present in EEG and fMRI. Moreover, the contralateral MI related decrease in EEG sensorimotor rhythm amplitude correlated inversely with fMRI activation in the contralateral sensorimotor areas, whereas a lateralized fMRI pattern did not necessarily go along with a lateralized EEG pattern. Together, the findings indicate a complex relationship between MI EEG signals and sensorimotor cortical activity, whereby both are similarly modulated by EEG neurofeedback. This finding supports the potential of MI EEG neurofeedback for motor rehabilitation and helps to better understand individual differences in MI BCI performance.

Original publication




Journal article



Publication Date





438 - 447


BCI illiteracy, Brain–computer interface (BCI), Concurrent EEG–fMRI, Motor imagery, Adult, Brain Mapping, Electroencephalography, Female, Humans, Imagination, Magnetic Resonance Imaging, Male, Movement, Neurofeedback, Sensorimotor Cortex, Young Adult