Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Behavioral significance is commonly coded by prefrontal neurons. The significance of a stimulus can be fixed through experience; in complex behavior, however, significance commonly changes with short-term context. To compare these cases, we trained monkeys in 2 versions of visual target detection. In both tasks, animals monitored a series of pictures, making a go response (saccade) at the offset of a specified target picture. In one version, based on "consistent mapping" in human visual search, target and nontarget pictures were fixed throughout training. In the other, based on "varied mapping," a cue at trial onset defined a new target. Building up over the first 1 s following this cue, many cells coded short-term context (cue/target identity) for the current trial. Thereafter, the cell population showed similar coding of behavioral significance in the 2 tasks, with selective early response to targets, and later, sustained activity coding target or nontarget until response. This population similarity was seen despite quite different activity in the 2 tasks for many single cells. At the population level, the results suggest similar prefrontal coding of fixed and short-term behavioral significance.

Original publication




Journal article


Cereb Cortex

Publication Date





2522 - 2534


Animals, Association Learning, Evoked Potentials, Visual, Macaca mulatta, Male, Motion Perception, Pattern Recognition, Visual, Prefrontal Cortex