Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Optimal perceptual decisions require sensory signals to be combined with prior information about stimulus probability. Although several theories propose that probabilistic information about stimulus occurrence is encoded in sensory cortex, evidence from neuronal recordings has not yet fully supported this view. We recorded activity from single neurons in inferior temporal cortex (IT) while monkeys performed a task that involved discriminating degraded images of faces and fruit. The relative probability of the cue being a face versus a fruit was manipulated by a latent variable that was not revealed to the monkeys and that changed unpredictably over the course of each recording session. In addition to responding to stimulus identity (face or fruit), population responses in IT encoded the long-term stimulus probability of whether a face or a fruit stimulus was more likely to occur. Face-responsive neurons showed reduced firing rates to expected faces, an effect consistent with "expectation suppression," but expected stimuli were decoded from multivariate population signals with greater accuracy. These findings support "predictive coding" theories, whereby neural signals in the mammalian visual system actively encode and update predictions about the local sensory environment.

Original publication

DOI

10.1016/j.cub.2016.07.007

Type

Journal article

Journal

Curr Biol

Publication Date

12/09/2016

Volume

26

Pages

2280 - 2290

Keywords

decision making, expectation suppression, monkey, neuron, predictive coding