Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: To examine development of sensitivity to auditory and visual temporal processes in children and the association with standardized measures of auditory processing and communication. Methods Normative data on tests of visual and auditory processing were collected on 18 adults and 98 children aged 6-10 years of age. Auditory processes included detection of pitch from temporal cues using iterated rippled noise and frequency modulation detection at 2 Hz, 40 Hz, and 240 Hz. Visual processes were coherent form and coherent motion detection. Test-retest data were gathered on 21 children. RESULTS: Performance on perceptual tasks improved with age, except for fine temporal processing (iterated rippled noise) and coherent form perception, both of which were relatively stable over the age range. Within-subject variability (as assessed by track width) did not account for age-related change. There was no evidence for a common temporal processing factor, and there were no significant associations between perceptual task performance and communication level (Children's Communication Checklist, 2nd ed.; D. V. M. Bishop, 2003) or speech-based auditory processing (SCAN-C; R. W. Keith, 2000). CONCLUSIONS: The auditory tasks had different developmental trajectories despite a common procedure, indicating that age-related change was not solely due to responsiveness to task demands. The 2-Hz frequency modulation detection task, previously used in dyslexia research, and the visual tasks had low reliability compared to other measures.

Original publication




Journal article


J Speech Lang Hear Res

Publication Date





1002 - 1015


Adolescent, Adult, Audiometry, Pure-Tone, Auditory Perception, Child, Female, Humans, Male, Reflex, Acoustic, Schools, Speech Acoustics, Students, Time Perception, Visual Perception