Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
  • Motion of glossy objects does not promote separation of lighting and surface colour.

    28 January 2018

    The surface properties of an object, such as texture, glossiness or colour, provide important cues to its identity. However, the actual visual stimulus received by the eye is determined by both the properties of the object and the illumination. We tested whether operational colour constancy for glossy objects (the ability to distinguish changes in spectral reflectance of the object, from changes in the spectrum of the illumination) was affected by rotational motion of either the object or the light source. The different chromatic and geometric properties of the specular and diffuse reflections provide the basis for this discrimination, and we systematically varied specularity to control the available information. Observers viewed animations of isolated objects undergoing either lighting or surface-based spectral transformations accompanied by motion. By varying the axis of rotation, and surface patterning or geometry, we manipulated: (i) motion-related information about the scene, (ii) relative motion between the surface patterning and the specular reflection of the lighting, and (iii) image disruption caused by this motion. Despite large individual differences in performance with static stimuli, motion manipulations neither improved nor degraded performance. As motion significantly disrupts frame-by-frame low-level image statistics, we infer that operational constancy depends on a high-level scene interpretation, which is maintained in all conditions.

  • Translucence perception is not dependent on cortical areas critical for processing colour or texture.

    9 January 2018

    Translucence is an important property of natural materials, and human observers are adept at perceiving changes in translucence. Perceptions of different material properties appear to arise from different cortical regions, and it is therefore plausible that the perception of translucence is dependent on specialised regions, separate from those important for colour and texture processing. To test for anatomical independence between areas necessary for colour, texture and translucence perception we assessed translucency perception in a cortically colour blind observer, who performs at chance on tasks of colour and texture discrimination. Firstly, in order to establish that MS has shown no significant recovery, we assessed his colour perception performance on the Farnsworth-Munsell 100 Hue Test. Secondly, we tested him with two translucence ranking tasks. In one task, stimuli were images of glasses of tea varying in tea strength. In the other, stimuli were glasses of tea varying only in milkiness. MS was able to systematically rank both strength and milkiness, although less consistently than controls, and for tea strength his rankings were in the opposite order. An additional group of controls tested with greyscale versions of the images succeeded at the tasks, albeit slightly less consistently on the milkiness task, showing that the performance of normal observers cannot be transformed into the performance of MS simply by removing colour information from the stimuli. The systematic performance of MS suggests that some aspects of translucence perception do not depend on regions critical for colour and texture processing.

  • Cooperation in social dilemmas: How can psychology help to meet climate change goals?

    28 January 2018

    Effectively managing shared natural resources is essential to protecting and improving our physical environment. This cannot be done without cooperation at international, national and local levels. Bringing together research on social dilemmas from the laboratory and the field gives us hope that we can work together to make a difference: we are social beings not ruled purely by economic motives, but influenced by our social context. Two significant insights from psychology that can help us to fight climate change are the roles of social norms and shared identities. We draw attention to environmentally friendly behaviour as the norm for people we identify with; and promote shared identities at local, national, and global levels in different contexts. While these processes could work for and against the climate change cause – e.g., local needs can conflict with global ones - we make recommendations for policymakers to harness their effects in specific ways.

  • Contributions of the Medial Prefrontal Cortex to Social Influence in Economic Decision-Making.

    7 March 2018

    Economic decisions are guided by highly subjective reward valuations (SVs). Often these SVs are over-ridden when individuals conform to social norms. Yet, the neural mechanisms that underpin the distinct processing of such normative reward valuations (NVs) are poorly understood. The dorsomedial and ventromedial portions of the prefrontal cortex (dmPFC/vmPFC) are putatively key regions for processing social and economic information respectively. However, the contribution of these regions to economic decisions guided by social norms is unclear. Using functional magnetic resonance imaging and computational modeling we examine the neural mechanisms underlying the processing of SVs and NVs. Subjects (n = 15) indicated either their own economic preferences or made similar choices based on a social norm-learnt during a training session. We found that that the vmPFC and dmPFC make dissociable contributions to the processing of SV and NV. Regions of the dmPFC processed "only" the value of rewards when making normative choices. In contrast, we identify a novel mechanism in the vmPFC for the coding of value. This region signaled both subjective and normative valuations, but activity was scaled positively for SV and negatively for NV. These results highlight some of the key mechanisms that underpin conformity and social influence in economic decision-making.

  • Peroxiredoxin 6 mediates Gαi protein-coupled receptor inactivation by cJun kinase.

    12 February 2018

    Inactivation of opioid receptors limits the therapeutic efficacy of morphine-like analgesics and mediates the long duration of kappa opioid antidepressants by an uncharacterized, arrestin-independent mechanism. Here we use an iterative, discovery-based proteomic approach to show that following opioid administration, peroxiredoxin 6 (PRDX6) is recruited to the opioid receptor complex by c-Jun N-terminal kinase (JNK) phosphorylation. PRDX6 activation generates reactive oxygen species via NADPH oxidase, reducing the palmitoylation of receptor-associated Gαi in a JNK-dependent manner. Selective inhibition of PRDX6 blocks Gαi depalmitoylation, prevents the enhanced receptor G-protein association and blocks acute analgesic tolerance to morphine and kappa opioid receptor inactivation in vivo. Opioid stimulation of JNK also inactivates dopamine D2 receptors in a PRDX6-dependent manner. We show that the loss of this lipid modification distorts the receptor G-protein association, thereby preventing agonist-induced guanine nucleotide exchange. These findings establish JNK-dependent PRDX6 recruitment and oxidation-induced Gαi depalmitoylation as an additional mechanism of Gαi-G-protein-coupled receptor inactivation.Opioid receptors are important modulators of nociceptive pain. Here the authors show that opioid receptor activation recruits peroxiredoxin 6 (PRDX6) to the receptor-Gαi complex by c-Jun N-terminal kinase, resulting in Gαi depalmitoylation and enhanced receptor-Gαi association.

  • Selective inhibition of distracting input.

    20 March 2018

    We review a series of studies exploring distractor suppression. It is often assumed that preparatory distractor suppression is controlled via top-down mechanisms of attention akin to those that prepare brain areas for target enhancement. Here, we consider two alternative mechanisms: secondary inhibition and expectation suppression within a predictive coding framework. We draw on behavioural studies, evidence from neuroimaging and some animal studies. We conclude that there is very limited evidence for selective top-down control of preparatory inhibition. By contrast, we argue that distractor suppression often relies secondary inhibition of non-target items (relatively non-selective inhibition) and on statistical regularities of the environment, learned through direct experience.

  • Fractionating the Neurocognitive Mechanisms Underlying Working Memory: Independent Effects of Dopamine and Parkinson's Disease.

    9 March 2018

    Deficits in working memory (WM) in Parkinson's disease (PD) are often considered to be secondary to dopaminergic depletion. However, the neurocognitive mechanisms by which dopamine causes these deficits remain highly contested, and PD is now also known to be associated with nondopaminergic pathology. Here, we examined how PD and dopaminergic medication modulate three components of WM: maintenance over time, updating contents with new information and making memories distracter-resistant. Compared with controls, patients were disproportionately impaired when retaining information for longer durations. By applying a probabilistic model, we were able to reveal that the source of this error was selectively due to precision of memory representations degrading over time. By contrast, replenishing dopamine levels in PD improved executive control over both the ability to ignore and update, but did not affect maintenance of information across time. This was due to a decrease in guess responses, consistent with the view that dopamine serves to prevent WM representations being corrupted by irrelevant information, but has no impact on information decay. Cumulatively, these results reveal a dissociation in the neural mechanisms underlying poor WM: whereas dopamine reduces interference, nondopaminergic systems in PD appear to modulate processes that prevent information decaying more quickly over time.

  • Apathy in rapid eye movement sleep behaviour disorder is common and under-recognized.

    20 March 2018

    BACKGROUND AND PURPOSE: Apathy is an important neuropsychiatric feature of Parkinson's disease (PD), which often emerges before the onset of motor symptoms. Patients with rapid eye movement sleep behaviour disorder (RBD) have a high probability of developing PD in future. Neuropsychiatric problems are common in RBD, but apathy has not previously been detailed in this key prodromal population. METHODS: Eighty-eight patients with polysomnographically proven RBD, 65 patients with PD and 33 controls were assessed for apathy using the Lille Apathy Rating Scale. Cognition and depression were also quantified. The sensitivity of the Unified Parkinson's Disease Rating Scale screening questions for apathy and depression was calculated. RESULTS: A total of 46% of patients with RBD were apathetic, compared with 31% of patients with PD in our sample. Most patients with RBD with depression were apathetic but more than half of apathetic patients were not depressed. The sensitivity of the single Unified Parkinson's Disease Rating Scale screening question was only 33% for mild apathy and 50% for severe apathy. CONCLUSIONS: Apathy is common in RBD and is underestimated by a single self-report question. Recognition of apathy as a distinct neuropsychiatric feature in RBD could aid targeted treatment interventions and might contribute to the understanding of prodromal PD.