Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

<jats:p>Recency effects are well documented in the adult and infant literature: recognition and recall memory are better for recently occurring events. We explore recency effects in infant categorization, which does not merely involve memory for individual items, but the formation of abstract category representations. We present a computational model of infant categorization that simulates category learning in 10-month-olds. The model predicts that recency effects outweigh previously reported order effects for the same stimuli. According to the model, infant behaviour at test should depend mainly on the identity of the most recent training item. We evaluate these predictions in a series of experiments with 10-month-old infants. Our results show that infant behaviour confirms the model’s prediction. In particular, at test infants exhibited a preference for a category outlier over the category average only if the final training item had been close to the average, rather than distant from it. Our results are consistent with a view of categorization as a highly dynamic process where the end result of category learning is not the overall average of all stimuli encountered, but rather a fluid representation that moves depending on moment-to-moment novelty. We argue that this is a desirable property of a flexible cognitive system that adapts rapidly to different contexts.</jats:p>

Original publication

DOI

10.1098/rsos.200328

Type

Journal article

Journal

Royal Society Open Science

Publisher

The Royal Society

Publication Date

10/2020

Volume

7

Pages

200328 - 200328