Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Attentional difficulties, both at home and in the classroom, are reported across a number of neurodevelopmental disorders. However, exactly how attention influences early socio-cognitive learning remains unclear. We addressed this question both concurrently and longitudinally in a cross-syndrome design, with respect to the communicative domain of vocabulary and to the cognitive domain of early literacy, and then extended the analysis to social behavior. Participants were young children (aged 4-9 years at Time 1) with either Williams syndrome (WS, N = 26) or Down syndrome (DS, N = 26) and typically developing controls (N = 103). Children with WS displayed significantly greater attentional deficits (as indexed by teacher report of behavior typical of attention deficit hyperactivity disorder (ADHD) than children with DS, but both groups had greater attentional problems than the controls. Despite their attention differences, children with DS and those with WS were equivalent in their cognitive abilities of reading single words, both at Time 1 and 12 months later, at Time 2, although they differed in their early communicative abilities in terms of vocabulary. Greater ADHD-like behaviors predicted poorer subsequent literacy for children with DS, but not for children with WS, pointing to syndrome-specific attentional constraints on specific aspects of early development. Overall, our findings highlight the need to investigate more precisely whether and, if so, how, syndrome-specific profiles of behavioral difficulties constrain learning and socio-cognitive outcomes across different domains.

Original publication




Journal article


Front Psychol

Publication Date





Down syndrome, Williams syndrome, attention, literacy and early reading development, longitudinal data analysis, neurodevelopmental disorders