Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Studies in monkeys show clear anatomical and functional distinctions among networks connecting with subregions within the prefrontal cortex. Three such networks are centered on lateral orbitofrontal cortex, medial frontal and cingulate cortex, and lateral prefrontal cortex and all have been identified with distinct cognitive roles. Although these areas differ in a number of their cortical connections, some of the first anatomical evidence for these networks came from tracer studies demonstrating their distinct patterns of connectivity with the mediodorsal (MD) nucleus of the thalamus. Here, we present evidence for a similar topography of MD thalamus prefrontal connections, using non-invasive imaging and diffusion tractography (DWI-DT) in human and macaque. DWI-DT suggested that there was a high probability of interconnection between medial MD and lateral orbitofrontal cortex, between caudodorsal MD and medial frontal/cingulate cortex, and between lateral MD and lateral prefrontal cortex, in both species. Within the lateral prefrontal cortex a dorsolateral region (the principal sulcus in the macaque and middle frontal gyrus in the human) was found to have a high probability of interconnection with the MD region between the regions with a high probability of interconnection with other parts of the lateral prefrontal cortex and with the lateral orbitofrontal cortex. In addition to suggesting that the thalamic connectivity in the macaque is a good guide to human prefrontal cortex, and therefore that there are likely to be similarities in the cognitive roles played by the prefrontal areas in both species, the present results are also the first to provide insight into the topography of projections of an individual thalamic nucleus in the human brain.

Original publication




Journal article



Publication Date





555 - 564


Adult, Animals, Brain Mapping, Diffusion Tensor Imaging, Female, Humans, Image Processing, Computer-Assisted, Macaca, Male, Neural Pathways, Prefrontal Cortex, Thalamus, Young Adult