Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: We examined development of auditory temporal integration and inhibition by assessing electrophysiological responses to tone pairs separated by interstimulus intervals (ISIs) of 25, 50, 100, 200, 400, and 800 ms in 28 children aged 7 to 9 years, and 15 adults. RESULTS: In adults a distinct neural response was elicited to tones presented at ISIs of 25 ms or longer, whereas in children this was only seen in response to tones presented at ISIs above 100 ms. In adults, late N1 amplitude was larger for the second tone of the tone pair when separated by ISIs as short as 100 ms, consistent with the perceptual integration of successive stimuli within the temporal window of integration. In contrast, children showed enhanced negativity only when tone pairs were separated by ISIs of 200 ms. In children, the amplitude of the P1 component was attenuated at ISIs below 200 ms, consistent with a refractory process. CONCLUSIONS: These results indicate that adults integrate sequential auditory information into smaller temporal segments than children. These results suggest that there are marked maturational changes from childhood to adulthood in the perceptual processes underpinning the grouping of incoming auditory sensory information, and that electrophysiological measures provide a sensitive, non-invasive method allowing further examination of these changes.

Original publication

DOI

10.1186/1471-2202-11-49

Type

Journal article

Journal

BMC Neurosci

Publication Date

16/04/2010

Volume

11

Keywords

Acoustic Stimulation, Adult, Aging, Auditory Cortex, Auditory Pathways, Auditory Perception, Auditory Threshold, Child, Electroencephalography, Evoked Potentials, Female, Humans, Male, Neural Inhibition, Neuropsychological Tests, Perceptual Masking, Reaction Time, Signal Processing, Computer-Assisted, Sound Localization, Time Factors, Time Perception, Young Adult