Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Recent studies have suggested an uneven profile of executive dysfunction in autism spectrum disorders (ASD). For example, some authors have reported deficits on newly developed tests of executive function sensitive to rostral prefrontal function, despite spared, or even superior, performance on other tests. We investigated the performance of a group of high-functioning participants with ASD (N=15) and an age- and IQ-matched control group (N=18) on two executive function tests, whilst undergoing functional magnetic resonance imaging (fMRI). Behaviourally, there were no significant differences between the two groups. In a classical test of executive function (random response generation), BOLD signal differed between the groups in the cerebellum but not in the frontal lobes. However, on a new test of executive function (selection between stimulus-oriented and stimulus-independent thought), the ASD group exhibited significantly greater signal-change in medial rostral prefrontal cortex (especially Brodmann Area 10) in the comparison of stimulus-oriented versus stimulus-independent attention. In addition, the new test (but not the classical test) provided evidence for abnormal functional organisation of medial prefrontal cortex in ASD. These results underline the heterogeneity of different tests of executive function, and suggest that executive functioning in ASD is associated with task-specific functional change.

Original publication

DOI

10.1016/j.neuropsychologia.2008.03.025

Type

Journal article

Journal

Neuropsychologia

Publication Date

2008

Volume

46

Pages

2281 - 2291

Keywords

Adult, Autistic Disorder, Brain, Cognition, Female, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Mental Processes, Middle Aged, Neuropsychological Tests, Parietal Lobe, Prefrontal Cortex, Psychomotor Performance, Reaction Time, Recruitment, Neurophysiological, Task Performance and Analysis