Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Translucence is an important property of natural materials, and human observers are adept at perceiving changes in translucence. Perceptions of different material properties appear to arise from different cortical regions, and it is therefore plausible that the perception of translucence is dependent on specialised regions, separate from those important for colour and texture processing. To test for anatomical independence between areas necessary for colour, texture and translucence perception we assessed translucency perception in a cortically colour blind observer, who performs at chance on tasks of colour and texture discrimination. Firstly, in order to establish that MS has shown no significant recovery, we assessed his colour perception performance on the Farnsworth-Munsell 100 Hue Test. Secondly, we tested him with two translucence ranking tasks. In one task, stimuli were images of glasses of tea varying in tea strength. In the other, stimuli were glasses of tea varying only in milkiness. MS was able to systematically rank both strength and milkiness, although less consistently than controls, and for tea strength his rankings were in the opposite order. An additional group of controls tested with greyscale versions of the images succeeded at the tasks, albeit slightly less consistently on the milkiness task, showing that the performance of normal observers cannot be transformed into the performance of MS simply by removing colour information from the stimuli. The systematic performance of MS suggests that some aspects of translucence perception do not depend on regions critical for colour and texture processing.

Original publication

DOI

10.1016/j.neuropsychologia.2017.11.009

Type

Journal article

Journal

Neuropsychologia

Publication Date

15/11/2017

Keywords

Cerebral achromatopsia, Cerebral cortex, Perception, Translucence, Vision