Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Staying engaged is necessary to maintain goal-directed behaviors. Despite this, engagement exhibits continuous, intrinsic fluctuations. Even in experimental settings, animals, unlike most humans, repeatedly and spontaneously move between periods of complete task engagement and disengagement. We, therefore, looked at behavior in male macaques (macaca mulatta) in four tasks while recording fMRI signals. We identified consistent autocorrelation in task disengagement. This made it possible to build models capturing task-independent engagement. We identified task general patterns of neural activity linked to impending sudden task disengagement in mid-cingulate gyrus. By contrast, activity centered in perigenual anterior cingulate cortex (pgACC) was associated with maintenance of performance across tasks. Importantly, we carefully controlled for task-specific factors such as the reward history and other motivational effects, such as response vigor, in our analyses. Moreover, we showed pgACC activity had a causal link to task engagement: transcranial ultrasound stimulation of pgACC changed task engagement patterns.

Original publication

DOI

10.1038/s41467-024-49128-w

Type

Journal article

Journal

Nat Commun

Publication Date

05/06/2024

Volume

15

Keywords

Animals, Male, Macaca mulatta, Magnetic Resonance Imaging, Gyrus Cinguli, Reward, Frontal Lobe, Behavior, Animal, Brain Mapping, Motivation