Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

According to signal detection theoretical analyses, visual signals occurring at a cued location are detected more accurately, whereas frequently occurring ones are reported more often but are not better distinguished from noise. However, conventional analyses that estimate sensitivity and bias by comparing true- and false-positive rates offer limited insights into the mechanisms responsible for these effects. Here, we reassessed the prior influences of signal probability and relevance on visual contrast detection using a reverse-correlation technique that quantifies how signal-like fluctuations in noise predict trial-to-trial variability in choice discarded by conventional analyses. This approach allowed us to estimate separately the sensitivity of true and false positives to parametric changes in signal energy. We found that signal probability and relevance both increased energy sensitivity, but in dissociable ways. Cues predicting the relevant location increased primarily the sensitivity of true positives by suppressing internal noise during signal processing, whereas cues predicting greater signal probability increased both the frequency and the sensitivity of false positives by biasing the baseline activity of signal-selective units. We interpret these findings in light of "predictive-coding" models of perception, which propose separable top-down influences of expectation (probability driven) and attention (relevance driven) on bottom-up sensory processing.

Original publication

DOI

10.1073/pnas.1120118109

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

28/02/2012

Volume

109

Pages

3593 - 3598

Keywords

Adult, Attention, Contrast Sensitivity, Cues, False Positive Reactions, Female, Humans, Male, Models, Psychological, Photic Stimulation, Probability, Signal Detection, Psychological, Young Adult