Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The mechanisms by which attentional control biases mnemonic representations have attracted much interest but remain poorly understood. As attention and memory develop gradually over childhood and variably across individuals, assessing how participants of different ages and ability attend to mnemonic contents can elucidate their interplay. In Experiment 1, 7-year-olds, 10-year-olds, and adults were asked to report whether a probe item had been part of a previously presented four-item array. The initial array could either be uncued, be preceded ("precued"), or followed ("retrocued") by a spatial cue orienting attention to one of the potential item locations. Performance across groups was significantly improved by both cue types, and individual differences in children's retrospective attentional control predicted their visual short-term and working memory span, whereas their basic ability to remember in the absence of cues did not. Experiment 2 imposed a variable delay between the array and the subsequent orienting cue. Cueing benefits were greater in adults than in 10-year-olds, but they persisted even when cues followed the array by nearly 3 seconds, suggesting that orienting operated on durable short-term representations for both age groups. The findings indicate that there are substantial developmental and individual differences in the ability to control attention to memory and that in turn these differences constrain visual short-term memory capacity.

Original publication




Journal article


Q J Exp Psychol (Hove)

Publication Date





277 - 294


Adolescent, Adult, Age Factors, Attention, Child, Cues, Female, Human Development, Humans, Individuality, Intelligence, Male, Memory, Short-Term, Neuropsychological Tests, Photic Stimulation, Reaction Time, Regression Analysis, Time Factors, Young Adult