Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The observation of others’ choices is an important means by which we can learn about the world and communicate with others. We propose a new uncertainty-based observational learning model in which individuals use not only information about observed choices themselves, but also the time taken to make them, allowing them to make inferences about others uncertainty. We show that this model efficiently learns observed values and describes the behaviour of subjects in a novel observational learning task with a computer agent whose reaction times are manipulated. The model predicts that specific quantities, namely value differences, individual uncertainty, and observed uncertainty, should each be co-represented in the brain. We tested this in a human versus human fMRI hyper-scanning task, and show that they have a convergent representation in lateral orbitofrontal cortex, suggesting this region is central to the social learning network.