Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The striatum's complex microcircuit is made by connections within and between its D1- and D2-receptor expressing projection neurons and at least five species of interneuron. Precise knowledge of this circuit is likely essential to understanding striatum's functional roles and its dysfunction in a wide range of movement and cognitive disorders. We introduce here a Bayesian approach to mapping neuron connectivity using intracellular recording data, which lets us simultaneously evaluate the probability of connection between neuron types, the strength of evidence for it, and its dependence on distance. Using it to synthesise a complete map of the mouse striatum, we find strong evidence for two asymmetries: a selective asymmetry of projection neuron connections, with D2 neurons connecting twice as densely to other projection neurons than do D1 neurons, but neither subtype preferentially connecting to another; and a length-scale asymmetry, with interneuron connection probabilities remaining non-negligible at more than twice the distance of projection neuron connections. We further show our Bayesian approach can evaluate evidence for wiring changes, using data from the developing striatum and a mouse model of Huntington's disease. By quantifying the uncertainty in our knowledge of the microcircuit, our approach reveals a wide range of potential striatal wiring diagrams consistent with current data.SIGNIFICANCE STATEMENTTo properly understand a neuronal circuit's function, it is important to have an accurate picture of the rate of connection between individual neurons and how this rate changes with the distance separating pairs of neurons. We present a Bayesian method for extracting this information from experimental data and apply it to the mouse striatum, a subcortical structure involved in learning and decision-making, which is made up of a variety of different projection neurons and interneurons. Our resulting statistical map reveals not just the most robust estimates of the probability of connection between neuron types, but also the strength of evidence for them, and their dependence on distance.

Original publication




Journal article


J Neurosci

Publication Date