Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The locus coeruleus (LC) has a long-established role in the attentional and arousal response to threat, and in the emergence of pathological anxiety in pre-clinical models. However, human evidence of links between LC function and pathological anxiety has been restricted by limitations in discerning LC with current neuroimaging techniques. We combined ultra-high field 7-Tesla and 0.4 × 0.4 × 0.5 mm quantitative MR imaging with a computational LC localization and segmentation algorithm to delineate the LC in 29 human subjects including subjects with and without an anxiety or stress-related disorder. Our automated, data-driven LC segmentation algorithm provided LC delineations that corresponded well with postmortem anatomic definitions of the LC. There was variation of LC size in healthy subjects (125.7 +/- 59.3 mm3), which recapitulates histological reports. Patients with an anxiety or stress-related disorder had larger LC compared to controls (Cohen's d = 1.08, p = 0.024). Larger LC was additionally associated with poorer attentional and inhibitory control and higher anxious arousal (FDR-corrected p's<0.025), trans-diagnostically across the full sample. This study combined high-resolution and quantitative MR with a mixture of supervised and unsupervised computational techniques to provide robust, sub-millimeter measurements of the LC in vivo, which were additionally related to common psychopathology. This work has wide-reaching applications for a range of neurological and psychiatric disorders characterized by expected LC dysfunction.

Original publication

DOI

10.1016/j.nicl.2019.102148

Type

Journal article

Journal

Neuroimage Clin

Publication Date

2020

Volume

25

Keywords

Anxiety, High-field MRI, Locus coeruleus, Norepinephrine, PTSD, Structural imaging, Adult, Anxiety Disorders, Female, Humans, Image Interpretation, Computer-Assisted, Locus Coeruleus, Machine Learning, Magnetic Resonance Imaging, Male, Middle Aged, Neuroimaging, Stress Disorders, Post-Traumatic, Young Adult