Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The two catecholamines, noradrenaline and dopamine, have been shown to play comparable roles in behavior. Both noradrenergic and dopaminergic neurons respond to cues predicting reward availability and novelty. However, even though both are thought to be involved in motivating actions, their roles in motivation have seldom been directly compared. We therefore examined the activity of putative noradrenergic neurons in the locus coeruleus and putative midbrain dopaminergic neurons in monkeys cued to perform effortful actions for rewards. The activity in both regions correlated with engagement with a presented option. By contrast, only noradrenaline neurons were also (i) predictive of engagement in a subsequent trial following a failure to engage and (ii) more strongly activated in nonrepeated trials, when cues indicated a new task condition. This suggests that while both catecholaminergic neurons are involved in promoting action, noradrenergic neurons are sensitive to task state changes, and their influence on behavior extends beyond the immediately rewarded action.

Original publication




Journal article


Cereb Cortex

Publication Date





4979 - 4994


dopamine, error, motivation, noradrenaline, state change, Adrenergic Neurons, Animals, Dopaminergic Neurons, Locus Coeruleus, Macaca mulatta, Male, Mesencephalon, Motivation, Reward